

CÉLIA HANAKO KANO
DAVID FERNANDES DE CARVALHO GOMES

IMPLEMENTAÇÃO E INTEGRAÇÃO DO SUBSISTEMA DE

TRANSPORTE EM UM SISTEMA PRODUTIVO DISPERSO

São Paulo
2010

CÉLIA HANAKO KANO
DAVID FERNANDES DE CARVALHO GOMES

IMPLEMENTAÇÃO E INTEGRAÇÃO DO SUBSISTEMA DE

TRANSPORTE EM UM SISTEMA PRODUTIVO DISPERSO

Monografia apresentada à Escola
Politécnica da Universidade de São Paulo
referente à disciplina PMR 2550 – Projeto
de Conclusão de Curso II

Curso de Graduação:
Engenharia Mecatrônica

Orientador:
Professor Dr. Paulo Eigi Miyagi

São Paulo
2010

FICHA CATALOGRÁFICA

Kano, Célia Hanako

Implementação e integração do subsistema de transpo rte em
um sistema produtivo disperso / C.H. Kano, D.F.C. G omes. --
São Paulo, 2010.

176 p.

Trabalho de Formatura - Escola Politécnica da Unive rsidade
de São Paulo. Departamento de Engenharia Mecatrônic a e de
Sistemas Mecânicos.

1. Sistemas de produção 2. Serviços 3. Internet 4. Redes de
Petri I. Gomes, David Fernandes de Carvalho II. Un iversidade de
São Paulo. Escola Politécnica. Departamento de Enge nharia
Mecatrônica e de Sistemas Mecânicos III. t.

DEDICATÓRIA

Aos meus pais, Sonia e Celso, pelos esforços em

proporcionar uma boa formação e incentivos na conclusão

de mais uma etapa na minha vida; e aos amigos, pelos

momentos de alegria que compartilhamos nesses anos.

Célia Hanako Kano

Aos meus pais Maria Luisa Gonçalves Fernandes Gomes e

Luís Filipe de Carvalho Gomes e minha irmã Joana

Fernandes de Carvalho Gomes pelo apoio e incentivo ao

longo de meus estudos

David Fernandes de Carvalho Gomes

AGRADECIMENTOS

Agradecimento especial ao professor Paulo Eigi Miyagi, pela orientação e pelo grande

estímulo e ensinamento transmitidos em sala de aula e durante todo o Trabalho de

Formatura.

Aos colegas José Isidro Garcia Melo, Marcosiris Amorim de Oliveira Pessoa, Reinaldo

Squillante Júnior, Samira Souit e ao professor Fabrício Junqueira pelo apoio que

viabilizaram o desenvolvimento do presente trabalho. Agradecemos também aos demais

colegas do Laboratório de Sistemas de Automação (LSA) que indiretamente nos ajudaram

com o trabalho.

Por fim, um agradecimento à Escola Politecnica da USP, em especial ao Departamento de

Engenharia Mecatrônica e de Sistemas Mecânicos, que institucionalmente viabilizaram este

trabalho, e à CNPq, FAPESP e CAPES por financiarem este projeto.

RESUMO

O presente projeto consiste no desenvolvimento de uma interface homem-

computador para o subsistema de transporte, bem como sua integração aos demais

subsistemas que fazem parte de um sistema de manufatura automatizado instalado na

Escola Politécnica da Universidade de São Paulo (EPUSP). Este projeto faz parte de um

projeto de pesquisa do desenvolvimento de uma arquitetura para a teleoperação e

monitoração remota via internet de um sistema de manufatura disperso. O subsistema de

transporte realiza a movimentação de pallets para o transporte de peças do sistema de

manufatura para a montagem mecânica de um produto. O sistema de manufatura é assim

composto por vários subsistemas produtivos fisicamente distribuídos, mas com os

respectivos controladores ligados à internet.

Palavras chave: sistema produtivo, ambiente distribuído, web service, teleoperação.

ABSTRACT

This project develops a human-computer interface for the transport subsystem and its

integration with other subsystems that are part of an automated manufacturing system

installed at the Escola Politécnica da Universidade de São Paulo (EPUSP). This project is

part of a research project to develop an architecture for teleoperation and remote monitoring

via the Internet of a dispersed manufacturing system. The transport subsystem performs the

movement of pallets that transport parts from a manufacturing system to a mechanical

assembly system. So then, the manufacturing system is composed of several distributed

productive subsystems with their drivers connected to the Internet.

Keywords: production system, distributive environment, web service, teleoperation

LISTA DE ILUSTRAÇÕES

Figura 1 - Mapa da rede de fibra óptica do projeto Kyatera no campus USP São Paulo...... 17

Figura 2 - Sistema produtivo disperso.. 22

Figura 3 - Sistema produtivo emulado ... 22

Figura 4 - Elementos do PFS: (a) Elemento ativo; (b) Elemento distribuidor; (c) Arco.......... 25

Figura 5 - Hierarquia da comunicação industrial (Adaptado de SIEMENS, 2008). 27

Figura 6 - Cabos ASI (SIEMENS, 2008). ... 28

Figura 7 - Esquema da estrutura cliente/servidor da comunicação via OPC 30

Figura 8 - Foto do corpo nas três cores (preta, prata e rosa), do pino nas duas cores (preta e

cinza), mola e tampa (azul).. 31

Figura 9 - Subsistemas do sistema (adaptado de KANO et al., 2009).................................. 31

Figura 10 - Os três tipos de produtos (adaptado de KANEKO, 2008) 32

Figura 11 - Subsistema de alimentação (adaptado de MARCHENTA, 2009)....................... 33

Figura 12 - Subsistema de inspeção (adaptado de MARCHENTA, 2009)............................ 33

Figura 13 - Subsistema de montagem (adaptado de MARCHENTA, 2009) 34

Figura 14 - Subsistema de transporte (adaptado de MARCHENTA, 2009) 34

Figura 15 - Arquitetura do sistema (Adaptado de MELO, 2008)... 35

Figura 16 - Diagrama esquemático do subsistema de transporte (hardware) 36

Figura 17 - Esquema do subsistema de transporte (KANEKO, 2008) 37

Figura 18 - “Copo” do Pallet... 38

Figura 19 - Guias curvadas nas junções.. 38

Figura 20 - Estações de transporte do subsistema .. 39

Figura 21 - Detalhe da trava na entrada da estação e os sensores 39

Figura 22 - Nomenclatura adotada para os atuadores e sensores....................................... 40

Figura 23 - Módulo ASI utilizado no projeto (SIEMENS, 2008). ... 42

Figura 24 - SIMATIC S7-300 design (PINHEIRO, 2006). ... 42

Figura 25 - Diagrama esquemático dos quatro subsistemas (hardware).............................. 43

Figura 26 - Diagrama esquemático do subsistema de transporte (software)........................ 44

Figura 27 - Web Site criado para o subsistema de transporte.. 46

Figura 28 - Diagrama esquemático dos quatro subsistemas (software) 47

Figura 29 - Componentes hardware e software do sistema flexível 48

Figura 30 - Estrutura dos WSs... 49

Figura 31 – Diagrama de sequência do serviço Pedido_Peca() do WS Alimentação. 51

Figura 32 - Diagrama de sequência do serviço Pedido_Inspecao() do WS Inspeção........... 51

Figura 33 - Diagrama de sequência do serviço Envio_Peca() do WS Inspeção. 52

Figura 34 - Diagrama de sequência do serviço Rejeita_Peca() do WS Inspeção................. 52

Figura 35 - Diagrama de sequência do serviço Expulsar_peca_para_carro() do WS

Inspeção. ... 52

Figura 36 - Diagrama de sequência do serviço Notifica_inspecao() do WS Inspeção. 53

Figura 37 - Diagrama de sequência do serviço Verificar_cor_inspecionada() do WS

Inspeção. ... 53

Figura 38 - Diagrama de sequência do serviço Inspecao_solicita_carro() do WS Inspeção. 54

Figura 39 - Diagrama de sequência do serviço Informa_Rosa() do WS Inspeção................ 54

Figura 40 - Diagrama de sequência do serviço Informa_Preta() do WS Inspeção. 54

Figura 41 - Diagrama de sequência do serviço Informa_Prata() do WS Inspeção. 55

Figura 42 - Diagrama de sequência do serviço Montagem_solicita_carro_para_montagem()

do WS Inspeção. ... 55

Figura 43 - Diagrama de sequência do serviço Montagem_solicita_carro_para_produto() do

WS Inspeção. .. 55

Figura 44 - Diagrama de sequência do serviço Pegar_Peca() do WS Montagem. 56

Figura 45 - Diagrama de sequência do serviço Montar_rosa() do WS Montagem................ 56

Figura 46 - Diagrama de sequência do serviço Montar_preta() do WS Montagem. 57

Figura 47 - Diagrama de sequência do serviço Montar_prata() do WS Montagem. 57

Figura 48 - Diagrama de sequência do serviço atualizar_disponibilidade_0() do WS

Coordenador.. 57

Figura 49 - Diagrama de sequência do serviço atualizar_disponibilidade_1() do WS

Coordenador.. 58

Figura 50 - Diagrama de sequência do serviço obter_disponibilidade () do WS Coordenador.

.. 58

Figura 51 - Diagrama de sequência do serviço Chama_Alimentacao_Peca() do WS

Coordenador.. 58

Figura 52 - Diagrama de sequência do serviço Resposta_Alimentacao() do WS

Coordenador.. 59

Figura 53 - Diagrama de sequência do serviço Resposta_Inspecao() do WS Coordenador.60

Figura 54 - Diagrama de sequência do serviço Resposta_Carrinho() do WS Coordenador. 60

Figura 55 - Diagrama de sequência do serviço Resposta_Carrinho_inicio_montagem() do

WS Coordenador. .. 60

Figura 56 - Diagrama de sequência do serviço Resposta_Telecomando_de_inspecao() do

WS Coordenador. .. 61

Figura 57 - Diagrama de sequência do serviço Resposta_Carrinho_fim_montagem() do WS

Coordenador.. 62

Figura 58 - Diagrama de sequência do Observador de Pedido.. 64

Figura 59 - Observador de Pedido. .. 65

Figura 60 - Estrutura do Software de controle do sistema produtivo 65

Figura 61 - As três situações de um pallet em relação a cada estação de parada 67

Figura 62 - PFS do subsistema de transporte.. 69

Figura 63 - Configuração do SIMATIC Manager. ... 70

Figura 64 - Configuração de hardware... 70

Figura 65 - Janela de configuração da CPU 315-2 DP... 71

Figura 66 - Rede de comunicação entre o PC e o CLP.. 71

Figura 67 - Blocos do STEP7... 72

Figura 68 - Data Base para identificação do pallet... 72

Figura 69 - Tabela de Variáveis para a estação 3.. 73

Figura 70 - Tabela de Variáveis para a estação 4.. 74

Figura 71 - Station Configuration Editor ... 74

Figura 72 Fluxograma de acesso... 75

Figura 73 - Página principal ... 76

Figura 74 - Página Principal – Cliente não encontrado. ... 76

Figura 75 - Novo Cadastro... 77

Figura 76 - Novo Cadastro – Cadastro realizado. .. 77

Figura 77 - Página do cliente. .. 78

Figura 78 - Cadastro de pedido. .. 78

Figura 79 - Cadastro de pedido – Cadastro realizado. ... 79

Figura 80 - Acompanhamento do pedido. .. 79

Figura 81 - Acompanhamento do pedido – Pedido inexistente. ... 80

Figura 82 - Acompanhamento do pedido – Status: pendente... 80

Figura 83 - Ciclo de vida (adaptado de MIYAGI, 1996) .. 86

LISTA DE TABELAS

Tabela 1 - Tabela de sensores .. 40

Tabela 2 - Tabela de Atuadores... 41

Tabela 3 - Mapeamento OPC do Subsistema de Transporte ... 50

Tabela 4 - Descrição de alguns requisitos não-funcionais ... 66

Tabela 5 - Mapeamento OPC do Subsistema de Alimentação... 90

Tabela 6 - Mapeamento OPC do Subsistema de Inspeção.. 90

Tabela 7 - Mapeamento OPC do Subsistema de Montagem ... 91

LISTA DE ABREVIATURAS E SIGLAS

ASI Actuator Sensor Interface

BPEL Business Process Execution Language

B2B Business-To-Business

CLP Controlador Lógico Programável

COM Component Object Model

DCOM Distributed Component Object Model

DB Data Base

EPUSP Escola Politécnica da Universidade de São Paulo

FB Function Block

I/O Input/Output

LED Light Emitting Diode

LSA Laboratório de Sistemas de Automação

OPC Object linking and embedding for Process Control

PC Personal Computer

PFS Production Flow Schema

SED Sistema a Evento Discreto

SOA Service Oriented Architecture

SOCRADES

Service Oriented Cross-layer Infrastructure for Distributed Smart

Embedded Devices

SP Sistema Produtivo

UML Unified Modeling Language

VAT Variable Table

XML Extensible Markup Language

WS Web Service

WSDL Web Service Description Language

SUMÁRIO

1. INTRODUÇÃO... 16

1.1. Motivação... 16

1.2. Justificativa .. 18

1.3. Objetivo.. 18

1.4. Organização do Texto .. 19

2. FUNDAMENTOS ... 20

2.1. Sistemas .. 20

2.1.1. Sistema produtivo disperso .. 20

2.1.2. Emulação de sistemas ... 21

2.1.3. Sistema colaborativo e arquitetura orientada a serviços....................................... 23

2.1.4. Web service ... 23

2.2. Modelagem de sistemas .. 24

2.2.1. Sistemas a eventos discretos ... 24

2.2.2. Production Flow Schema.. 25

2.2.3. Unified Modeling Language.. 25

2.3. Comunicação ... 26

2.3.1. Profibus.. 26

2.3.2. ASI ... 27

2.3.3. Comunicação síncrona e assíncrona.. 29

2.4. Ferramentas... 29

2.4.1. SIMATIC Manager.. 29

2.4.2. OPC Server.. 30

3. SISTEMA PRODUTIVO EMULADO 31

3.1. Alimentação ... 32

3.2. Inspeção .. 33

3.3. Montagem .. 33

3.4. Transporte.. 34

3.5. Arquitetura do sistema ... 35

4. PROJETO.. 36

4.1. SUBSISTEMA DE TRANSPORTE - HARDWARE ... 36

4.1.1. Planta do subsistema de transporte ... 37

4.1.2. Dispositivos de detecção e atuação ... 39

4.1.3. Listagem dos sensores... 39

4.1.4. Listagem dos atuadores ... 41

4.1.5. Comunicação via ASI ... 41

4.1.6. Controlador Programável ... 42

4.1.7. Comunicação PC - CLP ... 42

4.1.8. DEMAIS SUBSISTEMAS - HARDWARE.. 43

4.2. SUBSISTEMA DE TRANSPORTE - SOFTWARE.. 44

4.2.1. Transferência da lógica de controle para o CLP... 45

4.2.2. OPC Server.. 45

4.2.3. Web Service do subsistema de transporte ... 45

4.2.4. Web Site... 46

4.2.5. Teleoperador.. 46

4.2.6. DEMAIS SUBSISTEMAS - SOFTWARE .. 47

4.3. INTEGRAÇÃO ... 48

4.3.1. Estrutura dos web services... 49

4.3.2. Mapeamento OPC de cada subsistema ... 50

4.3.3. Descrição dos web services ... 50

4.3.4. WS Pedido ... 62

4.3.5. WS Cliente ... 63

4.3.6. Observador do Pedido.. 63

4.4. IMPLEMENTAÇÃO .. 65

4.4.1. Descrição das funções de controle... 66

4.4.2. Production Flow Schema.. 68

4.4.3. Configuração no SIMATIC Manager... 69

4.4.4. Lógica de controle no SIMATIC Manager ... 72

4.4.5. Teste do programa através do SIMATIC Manager ... 73

4.4.6. Teste do programa através do SP.. 74

4.4.7. Mapeamento no OPC Server ... 75

4.5. INTERFACES DO CLIENTE .. 75

4.5.1. Página principal.. 76

4.5.2. Novo cadastro .. 77

4.5.3. Página do cliente.. 78

4.5.4. Cadastro de pedido .. 78

4.5.5. Acompanhamento de pedido.. 79

5. CONCLUSÃO....................................... ... 81

6. REFERÊNCIAS BIBLIOGRAFICAS...................... .. 83

APÊNDICE A – Metodologia de projeto adotada ... 86

APÊNDICE B – Mapeamento OPC.. 90

APÊNDICE C – Integração: Web Site do Cliente ... 93

APÊNDICE D – Integração: Web Service do Pedido ... 96

APÊNDICE E – Integração: Aplicação Windows.. 107

APÊNDICE F – Integração: Web Service do Coordenador .. 109

APÊNDICE G – Subsistema de transporte: Web Service .. 114

ANEXO A – Subsistema de transporte: Web Site do Teleoperador 122

ANEXO B – Subsistema de transporte: Programa em Ladder ... 133

16

1. INTRODUÇÃO

Na chamada ‘era da Informação’, o homem tem testemunhado avanços tecnológicos

significativos na computação e na mecatrônica aplicado a áreas como telecomunicações,

robotização e automação. Isto tem proporcionado mudanças na percepção de distâncias e

tempos. O conceito de ‘globalização’ pode ser entendido como uma relação de

interdependência entre os países e dentre seus efeitos, cita-se a acirrada competição entre

as empresas, que requer uma adaptação destes aos diferentes mercados e,

conseqüentemente, a evolução dos processos produtivos.

Os sistemas produtivos (SPs) geograficamente dispersos (MIYAGI et al., 2009)

surgem como uma estrutura organizacional alternativa, com plantas em diferentes lugares

ou até países, com objetivos que envolvem (a) reduzir o custo através do acesso a mão-de-

obra, cultura técnica, recursos e matérias primas locais, (b) assegurar a qualidade

explorando as condições e infraestrutura de cada região e, (c) garantir o atendimento das

necessidades específicas de clientes de cada região. Ressalta-se que SPs são entendidos

aqui como sistemas com processos que produzem bens ou realizam serviços (adaptado de

VILLANI et al., 2007).

1.1. Motivação

O presente projeto está sendo conduzido no Laboratório de Sistemas de Automação

(LSA) localizado na EPUSP. A linha de pesquisa do laboratório é o desenvolvimento de

técnicas e tecnologias para o estudo, projeto e implementação de sistemas construídos pelo

homem (man made systems) sob a abordagem de sistemas a eventos discretos.

Adicionalmente, ressalta-se que este projeto está inserido no contexto dos seguintes

projetos: “BASys: Sistemas de Automação Balanceada”, apoiado pelo CNPq, e

“Telecomando e Monitoramento Remoto de Sistemas de Manufatura” e “Desenvolvimento

de um sistema colaborativo de tele-operação produtivo”, ambos participantes do programa

TIDIA-Kyatera e apoiados pela FAPESP.

O primeiro projeto, apoiado pelo CNPQ, teve início em 2004, e envolve o estudo de

metodologias de projeto de sistemas de automação balanceada, focado nos problemas de

construção de modelos e análise destes sistemas. As aplicações são generalizadas para o

caso de sistemas produtivos que envolvem não apenas sistemas de manufatura, mas

17

também sistemas/processos onde existe um tipo de agregação de valor aos itens (materiais

ou informações).

Os demais projetos são apoiados pelo programa TIDIA-Kyatera. Lançado em 2001

pela FAPESP, o projeto Kyatera do programa TIDIA (Tecnologia da Informação no

Desenvolvimento da Internet Avançada) tem como objetivo formar um ambiente de trabalho

colaborativo à distância para a geração de conhecimento e inovações tecnológicas entre

empresas, institutos de pesquisa, universidades e agências de fomento. Para isso, desde

abril de 2004, foram feitas parcerias com empresas do setor de telecomunicações e a

criação de uma rede de fibras ópticas de alta velocidade (fiber-to-the-lab) que chega

diretamente ao interior dos laboratórios (KYATERA, 2010). Dentre os beneficiados com a

rede, temos: as universidades Unicamp, USP São Carlos, USP São Paulo (Figura 1), PUC

Campinas, UFSCar, IPEN, Inatel, Incor e a empresa Telefônica.

Figura 1 - Mapa da rede de fibra óptica do projeto Kyatera no campus USP São Paulo

Na Europa foi desenvolvido o projeto SOCRADES (Service Oriented Cross-layer

infRAstructure for Distributed smart Embedded deviceS) um trabalho do Information Society

Technologies, que integra o European Union’s 6th Framework Programme. O SOCRADES

tem como objetivo desenvolver uma nova geração de sistemas automatizados industriais

através da SOA (Service Oriented Architecture). Baseado no paradigma da automação

colaborativa, o SOCRADES considera o uso de ferramentas e métodos flexíveis que

permitem a reconfiguração e operação em rede colaborativa, através da descentralização e

sistemas embarcados distribuídos. Para isso, propõe se que os sistemas devem ser

projetados segundo o conceito de orientação a serviços, ou seja, uma arquitetura que

apresente uma alta adaptabilidade e rápida configuração de seus processos (adaptado de

SIXTH FRAMEWORK PROGRAMME, 2010).

18

1.2. Justificativa

No presente contexto de globalização e busca pela redução de custos através da

distribuição geográfica de diferentes unidades produtivas torna-se latente o problema de

integrar estas plantas produtivas de forma eficiente e assegurando a devida flexibilidade.

Embora a distribuição da planta em diferentes partes possa apresentar vantagem

competitiva, a coordenação e controle de movimentação dos insumos e produtos não são

triviais. Desta forma o desenvolvimento de meios práticos e baratos para a integração

dessas plantas é de suma importância para o desenvolvimento competitivo deste meio de

produção.

Além das dificuldades relacionadas à movimentação destes materiais é necessário

integrar os sistemas de forma a encadear as atividades produtivas de forma coerente e

minimizando o tempo de espera e de retrabalho. Neste âmbito a exploração da aplicação de

web services se demonstra uma alternativa viável em um momento em que as redes de

internet estão crescendo em sua capacidade e sua confiabilidade.

1.3. Objetivo

O presente projeto pretende contribuir na implementação de um framework de

sistemas colaborativos teleoperados para sistemas produtivos.

Este projeto visa especificamente o desenvolvimento da interface para as funções de

monitoração remota e teleoperação do subsistema de transporte. A implementação consiste

no desenvolvimento de um programa computacional que possa ser utilizado por um

teleoperador em qualquer PC ligado à internet. Este programa computacional deve

assegurar a reusabilidade em outras aplicações, dado que será desenvolvido na forma de

um módulo funcional.

Além disso, o projeto consiste na integração do subsistema de transporte com os

outros três subsistemas (de alimentação, inspeção e montagem) de um sistema produtivo

disperso. Para a integração, considera-se a SOA (Arquitetura Orientada a Serviços), que

garante uma alta adaptabilidade e rápida configuração de seus processos através da

criação de módulos funcionais.

19

1.4. Organização do Texto

No capítulo 2 apresentam-se os fundamentos abordados ao longo do trabalho, como

os sistemas produtivos dispersos, web services e a descrição de protocolos de comunicação

(ASI e Profibus). Em seguida, o capítulo 3 especifica o sistema flexível de montagem

automatizado instalado no LSA-EPUSP, através da descrição dos componentes e

funcionamento de cada subsistema. A seguir, o capítulo 4 apresenta o levantamento de

informações e etapas adotadas para a implementação do subsistema de transporte e a

integração dos quatro subsistemas. Este capítulo inclui descrições da parte de hardware

(listagem de sensores, atuadores, por exemplo), da parte de software (mapeamento com o

OPC Server, criação de web services) e da integração (funcionamento do Coordenador,

diagramas de seqüência, interfaces do cliente). Por fim, o capítulo 5 encerra com a

discussão dos resultados obtidos e das simplificações consideradas.

20

2. FUNDAMENTOS

Nesse capítulo, inicialmente apresentamos conceitos a serem discutidos ao longo do

trabalho. Em seguida, uma visão geral do funcionamento do sistema flexível de montagem e

uma descrição de cada subsistema e da arquitetura adotada.

Os fundamentos abordados foram divididos em 4 assuntos, sendo eles sistemas,

modelagem de sistemas, comunicação e ferramentas. No primeiro tópico serão discutidos

assuntos relacionados aos sistemas produtivos dispersos, a emulação de sistemas,

sistemas colaborativos e web services. No segundo tópico serão abordados temas

relevantes para a emulação de sistemas, de forma a focar nos aspectos relevantes para

este trabalho, onde se destacam os sistemas a eventos discretos, redes PFS e a Unified

Modeling Language. No terceiro tópico discorre-se sobre os principais aspectos de

comunicação, onde é possível destacar a rede ASI, a Profibus e comunicação síncrona e

assíncrona. Por ultimo será discutido o Simatic Manager e o OPC Server.

2.1. Sistemas

Um sistema pode ser definido como um conjunto de partes e componentes, isolado

de maneira conveniente do ambiente que o circunda, com um único objetivo, com um ou

mais aspectos variantes no tempo, a ser representado na forma de Equações de Estado

(BARROS, 2008).

Dentre os principais assuntos relacionados a sistema o presente trabalho aborda: os

sistemas produtivos dispersos, a emulação de sistemas, sistemas colaborativos e a

arquitetura orientada a serviços e os web services.

2.1.1. Sistema produtivo disperso

Um SP disperso consiste em plantas/unidades produtivas cujas instalações estão

geograficamente dispersas e que necessitam se comunicar e trabalhar de forma

colaborativa. Esta comunicação normalmente lida com uma grande quantidade de

informações entre centros produtivos de uma mesma entidade (empresa ou algum tipo de

consórcio de empresas), mas em diferentes localizações geográficas (MIYAGI et al., 2009).

Nesse trabalho considera-se que as entidades não são isoladas, mas sim algum tipo

de consórcio de diferentes unidades. Desse modo, um sistema industrial automatizado pode

21

ser constituído de diferentes unidades produtivas responsáveis pela recepção e distribuição

da matéria-prima, testes de controle de qualidade, transporte e montagem dos subprodutos

intermediários e do produto final, e por outras funções. Assim, as unidades produtivas

podem ter localizações geográficas diferentes, como em cidades ou países afastados,

contudo, uma integração entre essas diferentes unidades deve ser garantida pelo SP

disperso.

O sistema industrial automatizado é considerado um SED, pois seus eventos não

são contínuos no tempo, mas sim instantâneos e assíncronos. Ou seja, as diferentes

unidades produtivas possuem interdependência. Por exemplo, o teste de controle de

qualidade é feito somente após a distribuição da matéria prima; e por sua vez, o transporte

somente é requisitado após o teste de controle de qualidade.

2.1.2. Emulação de sistemas

No presente projeto considera-se que o sistema de montagem automatizado

instalado no Laboratório de Sistemas de Automação (LSA) na EPUSP emula um SP

disperso. Define-se “emulação” como o casamento de duas disciplinas: simulação e projeto

do sistema de controle (SCHEISS, 2001).

Neste projeto, a primeira disciplina, simulação, ocorre quando o modelo de SED do

SP disperso é recriado para ser verificado e analisado utilizando uma técnica de simulação

(SCHEISS, 2001). Por exemplo, um programa de simulação discreta que utiliza de métodos

numéricos e empregam procedimentos computacionais para executar o modelo. As

operações matemáticas são realizadas em momentos determinados utilizando as

informações disponíveis de forma que é possível obter uma execução através de passos e

visualizar os estados no modelo do sistema. Dessa forma, enquanto um SP disperso real

pode apresentar uma dinâmica relativamente complexa, a execução de um programa de

simulação discreta pode executar passos padronizados de diferentes cenários de forma a

obter dados significativos para a análise da dinâmica do SP disperso.

A segunda disciplina se refere ao projeto do sistema de controle. Geralmente, em

SPs o controle é implementado por meio de CLPs (controladores lógicos programáveis) ou

PCs (personal computers) com um software de controle, ambos com inputs (entradas) dos

sinais dos dispositivos de detecção e dispositivos de comando e, outputs (saídas) para os

dispositivos de atuação e de monitoração. No CLP e PCs, os softwares de controle

processam estes inputs e outputs convertendo comandos lógicos em sinais para atuadores

executarem ações reais do sistema. Como exemplos de inputs, temos sinais de switches e

22

botões; dentre os outputs, sinais para os cilindros pneumáticos, LEDs (light emitting diode),

etc (SCHIESS, 2001).

No presente projeto considera-se a emulação de um SP disperso. Um SP disperso

conforme descrito anteriormente é constituído de unidades produtivas geograficamente

dispersas, ou seja, cada uma em uma localização geográfica diferente, como em cidades ou

países afastados. Nesse cenário, uma rede de transporte é responsável pela movimentação

dos subprodutos intermediários pelas unidades produtivas. As unidades produtivas

executam operações produtivas, como testes de controle de qualidade e montagem dos

subprodutos. Um esboço de um SP disperso é mostrado na Figura 2. Na figura, o

subsistema de transporte é representado pelos caminhos traçados entre as unidades

produtivas.

Para a emulação do subsistema de transporte, de um SP disperso, o SP instalado no

LSA-EPUSP é utilizado (Figura 3). Nessa instalação, o subsistema de transporte é emulado

por um subsistema de movimentação de pallets, responsável pelo transporte das peças

entre as unidades produtivas (SP1/SP2 e SP3).

Figura 2 - Sistema produtivo disperso

Figura 3 - Sistema produtivo emulado

23

Dentre as vantagens da emulação, citam-se: (a) diminuição de riscos de acidentes

reais, (b) possibilidade de criar testes extensivos, (c) diminuição do custo em cada teste

através do modelo experimental (CHWIF, 2002), (d) não envolvimento de perdas de

produção e (e) não envolvimento de gastos com funcionários, e outros.

2.1.3. Sistema colaborativo e arquitetura orientada a serviços

Neste trabalho considera-se a emulação de um SP disperso e colaborativo. Um

sistema colaborativo considera um conjunto de unidades como um conglomerado de

entidades distribuídas, autônomas, inteligentes e reutilizáveis que cooperam entre si para

realização de uma tarefa. Essas entidades devem ser pró-ativas, isto é, devem ter iniciativa

nas ações e interagirem com as outras entidades para atingir os objetivos locais e globais

(SIXTH FRAMEWORK PROGRAMME, 2010).

A SOA (Service Oriented Architecture) é uma definição de arquitetura para sistemas

distribuídos baseados no conceito de “serviço”. Nessa arquitetura, serviços requerem

simples funções para atender os processos computacionais a serem executados. Na SOA,

cada bloco de programação do software pode ser interpretado como um serviço programado

ou de configuração (MIYAGI et al., 2009).

Dentre as vantagens da SOA estão: (a) reconfiguração dos elementos, ao invés da

reprogramação deles; (b) interoperabilidade, através da adição de novos serviços/elementos

ao sistema, independente da plataforma e da tecnologia (permitindo o uso de dispositivos

fabricados por empresas diferentes); (c) integração vertical, pela implementação da SOA

através de técnicas como o de Web Services que permite o tratamento comum (unificado)

de todas as informações (dados e sinais), desde os sinais/dados de sensores e atuadores

até os dados dos processos de negócios; (d) escalabilidade, permitindo a expansão do

sistema sem que necessite modificar significativamente o sistema original; (e) diagnósticos

de falhas (em sensores, fontes, controladores) e reparo em tempo real; (f) reuso dos

componentes, que gera uma redução de custos e sustentabilidade; e (g) proteção intelectual

da arquitetura que expõe a funcionalidade dos serviços e não a tecnologia por trás (SIXTH

FRAMEWORK PROGRAMME, 2010).

2.1.4. Web service

O web service é uma das técnicas para implementação da SOA. O web service (WS)

consiste em um conjunto de protocolos padrões que permitem a criação, distribuição e

24

integração de aplicações na internet, através da comunicação entre sistemas

computacionais, sendo muito utilizado em aplicações B2B (business-to-business)

(PAMPLONA, 2010). Define-se o B2B como a linguagem de negócios que faz uso das

tecnologias baseadas em Web para conduzir os negócios entre empresas. "Negócios"

podem significar compra e venda ou também troca de informações. As transações B2B

podem ocorrer diretamente entre empresas ou através de uma terceira entidade

(intermediária) para ajudar a compatibilizar as informações de compradores e vendedores

(TALLARD GROUP, 2010).

No WS, os softwares são serviços, e por isso chamado de e-services (CHENG et al.,

2006). Além disso, outra característica de um WS é a independência em relação à

plataforma de desenvolvimento e a linguagem de programação.

Numa economia globalizada com constantes exigências por interoperabilidade e

flexibilidade nas estruturas dos SPs, o WS se apresenta como uma solução adequada.

Caracterizado pela flexibilidade em encapsular funções e a interoperabilidade por suportar

integração de aplicações diversas, essa tecnologia tem chamado a atenção por reduzir o

custo na integração de aplicativos e facilitar a implementação de uma arquitetura orientada a

objetos (CHENG et al., 2006).

2.2. Modelagem de sistemas

De forma a permitir a análise sistemática de um sistema é necessário primeiramente

obter um modelo matemático para seu funcionamento, sendo posterior realizada a análise

de seu desempenho.

Na obtenção de um modelo devemos conciliar simplicidade e precisão nos

resultados da análise. Com freqüência, propriedades físicas inerentes ao sistema são

ignoradas. Nesse caso, se os efeitos que essas têm forem pequenos, obtêm-se boa

aproximação na análise do modelo e os resultados experimentais (OGATA, 2006).

Neste presente trabalho foram abordados os temas de sistemas a eventos discretos

e as ferramentas Production Flow Schema (PFS) e a Unified Modeling Language (UML).

2.2.1. Sistemas a eventos discretos

Os sistemas a eventos discretos (SEDs) são sistemas cujo comportamento dinâmico

é determinado pela ocorrência de estímulos discretos, ou seja, os eventos que ocorrem no

sistema não são contínuos no tempo, mas instantâneos e assíncronos (CURY, 2001). Estes

25

eventos determinam os estados dos SEDs que são mantidos até a ocorrência de novos

eventos.

2.2.2. Production Flow Schema

Na modelagem conceitual de um SP, considera-se o PFS (Production Flow Schema),

um grafo que representa as principais atividades realizadas no sistema, pois a identificação

destas atividades facilita a compreensão do sistema. A idéia é que um sistema visto como

um SED pode ser caracterizado com base no fluxo de itens e qualquer processo produtivo

pode ser decomposto em três elementos básicos (MIYAGI, 1996): (a) elemento ativo

(atividades); (b) elemento distribuidor (distribuições) e (c) arco (relações entre os

componentes anteriores. Os elementos básicos são representados na Figura 4:

Figura 4 - Elementos do PFS: (a) Elemento ativo; (b) Elemento distribuidor; (c) Arco

(Adaptado de MIYAGI, 1996)

2.2.3. Unified Modeling Language

O PFS, anteriormente descrito, é uma ferramenta de apoio para a especificação das

funcionalidades e operações do subsistema de transporte. Com base neste material, para a

especificação dos requisitos da interface com o operador deste subsistema optou-se pelo

uso da UML. A UML (Unified Modeling Language) é uma linguagem semi-formal

amplamente utilizada no processo de desenvolvimento de softwares para a especificação de

programas computacionais baseados no paradigma da “orientação a objeto”. Nessa

linguagem, diferentes tipos de diagramas permitem a representação dos diferentes aspectos

do programa computacional a ser desenvolvido (BERNARDI et al., 2002).

A UML 2.0 possui diferentes diagramas, classificados em três grupos: (a) diagramas

estruturais (de classes, de objetos, de componentes, de instalação, de pacotes e de

26

estrutura); (b) diagramas comportamentais (de casos de uso, de transição de estados e de

atividade); (c) diagramas de interação (de seqüência, de interatividade, de colaboração ou

comunicação e de tempo).

2.3. Comunicação

Os conceitos mais relevantes para a implementação deste foram a rede PROFIBUS,

protocolo de rede, a rede ASI, utilizada na implementação da rede de dispositivos de

detecção e atuação e a comunicação síncrona e assíncrona.

2.3.1. Profibus

Os conceitos de SOA e WS se aplicam para a implementação da parte lógica e de

software do sistema de controle do SP disperso, que envolve a interação via internet entre

as unidades produtivas (subsistemas), entretanto, para a comunicação entre os dispositivos

de controle que estão dentro das unidades produtivas é necessário considerar também um

protocolo de comunicação. Assim no presente caso considerou-se o PROFIBUS, que

permite monitorar e controlar múltiplos dispositivos de I/O’s.

O PROFIBUS é um protocolo de rede de comunicação de campo, aberto e

independente de fornecedores, no qual a interface entre dispositivos permite uma ampla

aplicação em processos de manufatura e automação (KANEKO, 2008). Este protocolo de

comunicação começou como um projeto apoiado por autoridades públicas, em 1987 na

Alemanha. Dentro do contexto deste projeto, 21 companhias e institutos uniram forças e

criaram um projeto estratégico chamado de FIELDBUS. O objetivo era a realização e

manutenção de um barramento de campo bitserial, tendo como requisito básico a

padronização da interface do dispositivo de campo. Por esta razão, os membros das

companhias do ZVEI (Associação Central da Indústria Alemã) concordaram em adotar um

único conceito técnico para manufatura e automação de processos (MAIBASHI; SAITO,

2009).

Hoje, existem diferentes versões PROFIBUS baseadas nas aplicações usuais de

automação: PROFIBUS DP (manufatura), PROFIBUS PA (processo), PROFIdrive (drivers) e

PROFIsafe (universal) (PROFIBUS, 2010), e este protocolo pode utilizar como meio físico

de transmissão qualquer um dos seguintes padrões: RS-485, ISC 61158-2 ou fibra óptica

(KANEKO, 2008).

27

O PROFIBUS é o protocolo de rede responsável pela comunicação entre o

computador local e o controlador remoto. Adicionalmente a este protocolo, o subsistema de

transporte utiliza uma comunicação com porta serial RS-232 para o dispositivo de

identificação dos pallets e uma comunicação através da ASI (Actuator Sensor Interface)

para os demais dispositivos. Esses dois tipos de comunicação serão descritos a seguir.

2.3.2. ASI

O SP tem entre seus componentes diversos dispositivos de atuação e de detecção.

Desta maneira, para organizar como estes dispositivos devem ser conectados ao dispositivo

de realização de controle (controladores). Com exceção dos dispositivos de detecção

responsáveis pela identificação do pallet em cada posição todos os demais dispositivos de

detecção a atuação se comunicam no sistema através da ASI (Actuator Sensor Interface).

A ASI é uma forma de implementar uma rede de dispositivos de atuação e detecção.

Normalmente, os sinais desses dispositivos nos processos industriais são transmitidos

através de um grande número de fios elétricos. A ASI permite a simplificação desta fiação,

substituindo então malhas de cabos elétricos, por apenas um par de fios, que são usados

por todos esses dispositivos. Este par de fios é responsável pela alimentação (de energia)

dos dispositivos e pela transmissão dos dados binários. A Figura 5 ilustra a posição da ASI

numa estrutura de comunicação industrial (adaptado de KANEKO, 2008).

Figura 5 - Hierarquia da comunicação industrial (Adaptado de SIEMENS, 2008).

A ASI foi concebida para complementar as redes de comunicação e tornar mais

simples e rápida a conexão dos dispositivos de atuação e detecção com os seus respectivos

28

controladores (dispositivos de realização do controle). O sistema baseia-se numa

comunicação mestre-escravo, cujo mestre é responsável pelo direcionamento das

"perguntas" e tratamento das "respostas" dos escravos. O mestre pode gerenciar até 31

escravos. A comunicação entre o mestre e os escravos é feita serialmente, através de um

par de fios não trançados e nem blindados. Inicialmente, o mestre "fala" com o primeiro

escravo, atualiza as saídas do mesmo (se existirem) e pergunta o estado binário das

entradas deste escravo. Imediatamente o escravo responde e, após um pequeno intervalo, o

mestre "fala" com o próximo escravo. Após o último escravo, o ciclo se completa e o mestre

começa a conversar novamente com o primeiro escravo. O ciclo de varredura completo tem

duração de até 5 ms (contendo 31 escravos na rede). Um escravo na ASI pode possuir no

máximo 4 entradas digitais e no máximo 4 saídas digitais (ALTUS, 2008). A ASI permite a

implementação de uma rede de comunicação com vários tipos de topologias, permitindo

ainda que a qualquer momento possa se incluir uma nova derivação, possibilitando a

conexão de novos dispositivos. Cada usuário pode escolher sua topologia, conforme sua

necessidade e disposição física dos elementos no campo. O cabo da rede de comunicação

não necessita de resistor de terminação, sua única limitação está relacionada com o

comprimento do fio, que deve ser de no máximo de 100 m de comprimento. Caso

necessário, o cabo pode ter um acréscimo de 200 m com a utilização de repetidores

(boosters), ficando, assim, com um comprimento total de 300 m (ALTUS, 2008).

O cabo (Figura 6), padrão da AS-Interface, tornou-se um tipo de marca registrada.

Ele possui uma seção geometricamente determinada e transmite ao mesmo tempo dados e

energia auxiliar para os sensores. Para os dispositivos de atuação é em geral, necessária

uma tensão auxiliar alimentada adicionalmente (24VCC). Desta forma, o cabo para a energia

auxiliar 24VCC é um cabo perfilado preto (Figura 6) (adaptado de KANEKO, 2008).

Para aplicações com exigências maiores de isolação elétrica podem se utilizar cabos

com TPE perfilado (elastômetro termoplástico) ou PUR perfilado (poliuretano). Como

condutor de transmissão podem ser utilizados também cabos redondos com sistema de

condução duplo. Uma blindagem do condutor não é necessária em função da técnica de

transmissão de sinais empregada (SIEMENS, 2008).

Figura 6 - Cabos ASI (SIEMENS, 2008).

29

2.3.3. Comunicação síncrona e assíncrona

Ressalta-se que entre os dispositivos de detecção e de atuação, e o dispositivo de

realização do controle, existem dois tipos de comunicação: síncrona e assíncrona.

A comunicação síncrona funciona baseada na sincronia do emissor e receptor, desta

forma a comunicação depende de um sinal de clock externo e ao enviar uma mensagem o

sistema fica inativo até obter uma resposta.

Na comunicação assíncrona não é necessário haver sincronia entre o emissor e o

receptor da mensagem, desta forma o sistema fica livre para realizar outras tarefas até que

receba uma resposta. Esse tipo de comunicação leva à exigência de um identificador, de

forma que o receptor saiba identificar a que se refere a mensagem que acaba de chegar.

Ao se comparar estes diferentes tipos de comunicação nota-se que a comunicação

assíncrona é simples, barata e de fácil implementação, porém gera um tráfego grande de

informações com propósitos unicamente de controle e processos secundários. A

comunicação síncrona por sua vez apresenta uma melhor relação de mensagens entregues

corretamente, sendo, porém mais complexa e exigindo hardware mais caro.

2.4. Ferramentas

De forma a integrar as funcionalidades dos diferentes aplicativos e permitir a escrita

dos programas responsáveis pela lógica de funcionamento do sistema foi necessário utilizar

duas ferramentas em especial. O SIMATIC Manager é o programa da Siemens que permite

a implementação da lógica enquanto o OPC Server facilita a integração entre dispositivos de

diferentes lógicas e fabricantes.

2.4.1. SIMATIC Manager

O SIMATIC Manager é o software da Siemens responsável pela integração entre a

parte física e a parte lógica dos sistemas da empresa. Essa ferramenta permite a

configuração, programação, compilação e envio de programas para o CLP. O SIMATIC

Manager permite o uso de três linguagens para sua programação, sendo elas: Ladder,

Instruction Lists e Function Blocks.

A transferência da lógica de controle do PC para o CLP é feita através de rede

PROFIBUS, enquanto comunicação de entradas e saídas do programa, referentes aos

dispositivos de detecção e atuação, é realizada através de rede ASI.

30

Uma vez transferido, o CLP pode executar as funções criadas independentemente

do PC. Para que seja possível o acesso remoto das funções programadas foi feito o

mapeamento das variáveis de memória do CLP através da aplicação OPC Scout.

2.4.2. OPC Server

O OPC (OLE for Process Control) define um tipo de comunicação padrão utilizado na

indústria que garante a interoperabilidade, ou seja, permite a troca de informações entre

equipamentos e aplicações de controle independente dos fabricantes (OPC Foundation,

2010). Esta tecnologia foi desenvolvida pelo OPC Foundation (organização sem fins

lucrativos, patrocinada pela Intellution, Microsoft e outras empresas). Em 1994, o grupo foi

formado por fornecedores de diversos ramos da indústria e tomaram como desafio eliminar

a necessidade do uso em conjunto do aplicativo cliente e servidor do mesmo fornecedor.

Figura 7 - Esquema da estrutura cliente/servidor da comunicação via OPC (OPC

Foundation, 2010)

Esta é uma tecnologia baseada em padrões abertos, tecnologias Microsoft de OLE

(Object Linking and Embedding), COM (Component Object Model) e DCOM (Distributed

Component Object Model). Essa tecnologia é baseada em uma estrutura cliente/servidor

(Figura 7), no qual uma aplicação atua como servidor provendo informações e a outra atua

como cliente recebendo as informações (MARCHENTA, 2009). Quanto à transferência de

dados, o servidor OPC atua como um “Portal de Software”, lendo informação dos

dispositivos de campo e transformando-as em dados OPC, com o propósito de integração

dos diversos sistemas e dispositivos (LING,CHEN,YU, 2004).

31

3. SISTEMA PRODUTIVO EMULADO

O projeto considera o subsistema de transporte de um sistema industrial

automatizado e geograficamente disperso, ou seja, um sistema no qual as unidades

produtivas podem estar em locais fisicamente afastados, como em cidades ou países

diferentes. Por esse motivo, as funções de monitoração e operação devem permitir que o

operador execute essas funções de forma remota, ou seja, sem a necessidade de estar no

mesmo local físico da unidade produtiva.

O sistema flexível de montagem automatizada instalado no LSA-EPUSP emula um

SP disperso. Neste sistema, o produto final é composto por quatro tipos de peças: “corpo”

(na cor preta, prata ou rosa), “pino” (na cor preta ou cinza), “mola” e “tampa” (na cor azul).

As peças são ilustradas na Figura 8.

Figura 8 - Foto do corpo nas três cores (preta, prata e rosa), do pino nas duas cores (preta e
cinza), mola e tampa (azul).

Figura 9 - Subsistemas do sistema (adaptado de KANO et al., 2009)

Este SP na versão atualmente instalada é um conjunto de quatro subsistemas, cada

qual capaz de ser operada individualmente (KANEKO, 2008). Os subsistemas são:

32

subsistema de alimentação, subsistema de inspeção, subsistema de transporte e

subsistema de montagem, indicados na Figura 9.

Neste SP, o subsistema de alimentação é responsável pelo armazenamento dos

“corpos”, e quando solicitado pelo operador, este subsistema libera estes para o subsistema

de inspeção. A seguir, o subsistema de inspeção é responsável pela identificação da cor

(prateada, rosa ou preta) e teste da altura dos “corpos” (KANEKO, 2008). Caso o “corpo”

não possua a cor ou altura desejada pelo operador, este subsistema é responsável pelo

descarte da peça. Em seguida, os corpos são enviados via subsistema de transporte para o

subsistema de montagem, no qual cada “corpo” recebe um “pino”, “mola” e “tampa”, sendo a

cor do “pino” dependente da cor do “corpo”, ou seja: “corpo” prata com “pino” preto, “mola” e

“tampa”; “corpo” rosa com “pino” preto, “mola” e “tampa”; e “corpo” preto com “pino” prata,

“mola” e “tampa”, como mostra a Figura 10.

Figura 10 - Os três tipos de produtos (adaptado de KANEKO, 2008)

A seguir, a descrição dos quatro subsistemas (alimentação, inspeção, montagem e

transporte) e da arquitetura do SP disperso a ser implementada.

3.1. Alimentação

O subsistema de alimentação é responsável pelo início da montagem, que ocorre a

partir da seleção do tipo correto de “corpo” para o produto desejado. Ele é composto por um

buffer com capacidade para 10 “corpos”, podendo as mesmas ser de cor prateada (metal),

preta (plástico), ou rosa (plástico). Através de um pistão e um braço basculante o “corpo “é

enviado para o subsistema de inspeção, que será responsável pela identificação do corpo.

33

Figura 11 - Subsistema de alimentação (adaptado de MARCHENTA, 2009)

3.2. Inspeção

Após a liberação do “corpo” pelo subsistema de alimentação, o “corpo” é levado para

o subsistema de inspeção por um braço articulado do módulo de transferência para

identificação das características do material e dimensões do “corpo” (identificação da cor –

prata, rosa ou preta; e teste da altura dos “corpos”). Para a inspeção, o subsistema utiliza

três tipos de sensores: indutivo (que identifica “corpos” metálicos), óptico (identifica os

corpos rosa ou prata) e capacitivo (que identifica a presença do corpo).

Assim, estas características são comparadas com as características do pedido feito

pelo usuário, resultando no descarte ou disponibilização do “corpo” para o subsistema de

transporte.

Figura 12 - Subsistema de inspeção (adaptado de MARCHENTA, 2009)

3.3. Montagem

Em seguida, os “corpos” são enviados para o subsistema de montagem através de

pallets do subsistema de transporte. Quando o pallet chega ao local para processamento do

34

subsistema de montagem, o “corpo” é suspenso e colocado no apoio para pallet. Em

seguida, a unidade de execução de montagem se move e o “corpo” é pego pela garra

dedicada e transferido para o módulo de travamento. A garra retira um “pino” do buffer,

sendo ele de alumínio para peças pretas ou de plástico preto para peças prateadas ou rosas

(MARCHENTA, 2009), e o posiciona no interior do “corpo”. Depois, uma “mola” é retirada do

seu buffer e pressionada sob o “pino”. Por fim, uma “tampa” é retirada do seu buffer,

rotacionada pelo dispositivo de montagem rotativo e fixada no “corpo”. Em seguida, a peça

montada é liberada pelo módulo de travamento e a garra leva a peça novamente até o

pallet.

Figura 13 - Subsistema de montagem (adaptado de MARCHENTA, 2009)

3.4. Transporte

O subsistema de transporte possui quatro locais específicos para a parada de

pallets: estação 1, estação 2, estação 3 e estação 4. A movimentação dos pallets é feita por

esteiras. Em cada estação existem dispositivos de detecção e de atuação para identificar os

pallets e para o devido posicionamento destes.

Figura 14 - Subsistema de transporte (adaptado de MARCHENTA, 2009)

35

3.5. Arquitetura do sistema

A arquitetura considerada neste caso é a SOA que apresenta uma alta

adaptabilidade e rápida configuração de seus processos (SIXTH FRAMEWORK

PROGRAMME, 2010). Neste sentido os subsistemas podem ser vistos como módulos

funcionais. A arquitetura do SP (Figura 15) visa assegurar a automatização e coordenação

das diferentes atividades dos subsistemas de montagem (em destaque), subsistema de

transporte, subsistema de inspeção e subsistema de alimentação, que são interligados

através da internet, fornecendo serviços específicos (SOUIT, 2009).

Figura 15 - Arquitetura do sistema (Adaptado de MELO, 2008)

36

4. PROJETO

A fim de especificar o subsistema de transporte, o item 4.1 descreve o

funcionamento do subsistema e a parte de hardware, apresentando os dispositivos de

detecção e atuação que o compõem e o controlador programável utilizado. O item 4.2

apresenta a parte de software, que envolve toda tecnologia que permite a comunicação via

Internet do subsistema de transporte, como o OPC Server e o web service. A efetiva

integração dos subsistemas é descrita no item 4.3, onde se apresenta a arquitetura adotada,

a SOA (Arquitetura Orientada a Serviços). Por fim, os itens 4.4 e 4.5 descrevem a

metodologia adotada para a modelagem e implementação das funções de controle, os

testes realizados e, finalmente, o funcionamento das interfaces do cliente.

4.1. SUBSISTEMA DE TRANSPORTE - HARDWARE

A seguir, a Figura 16 apresenta um diagrama esquemático do subsistema de

transporte (hardware).

Figura 16 - Diagrama esquemático do subsistema de transporte (hardware)

37

A Figura 16 foi enumerada para facilitar o entendimento dos próximos itens do

relatório. A descrição dos dispositivos de detecção e atuação (1), assim como a listagem

dos sensores e atuadores será feito nos itens 4.1.1, 4.1.2, 4.1.3 e 4.1.4. A comunicação via

ASI (2) será abordado no item 4.1.5. Em seguida, no item 4.1.6, faz-se uma breve

introdução do controle programável (3) utilizado na implementação. Por fim, o item 4.1.7

conclui com uma abordagem da comunicação PROFIBUS empregada para a comunicação

do PC e o controlador programável (4).

4.1.1. Planta do subsistema de transporte

O SP disperso aqui estudado pode ser dividido em quatro subsistemas (Figura 17),

de alimentação, de inspeção, de montagem e de transporte. Alguns dos dispositivos de

controle são utilizados por apenas um desses subsistemas, enquanto outros são

compartilhados.

Figura 17 - Esquema do subsistema de transporte (KANEKO, 2008)

O subsistema de transporte, foco deste trabalho, é composto por uma série de

esteiras de transporte e cinco pallets que transportam os “corpos” aprovados do subsistema

de inspeção até o de montagem.

O “pallet” aqui é um tipo de “bandeja” ou suporte feito de alumínio que possui um

formato próprio para o seu encaixe nas esteiras. Para facilitar o transporte das peças, o

pallet possui uma estrutura auxiliar em formato de “copo” com base circular, que permite o

38

encaixe das peças “corpo”. Esta estrutura auxiliar em formato de “copo” é exposta na Figura

18.

Figura 18 - “Copo” do Pallet

O subsistema de transporte possui quatro esteiras lineares dispostas, cada uma,

perpendicularmente entre as duas esteiras vizinhas. Quando os pallets estão apoiados nas

esteiras, elas se movimentam juntas. Guias curvadas em 90° facilitam a movimentação dos

pallets nas junções (Figura 19). A movimentação das esteiras é feita por quatro motores

elétricos auxiliares. Nos locais de carregamento e descarregamento de peças (estação 1,

estação 2, estação 3 e estação 4), existem dispositivos que desacoplam os pallets das

esteiras e pistões que quando acionados limitam a parada dos pallets que assim ficam em

posições fixas independentemente da movimentação das esteiras.

Figura 19 - Guias curvadas nas junções

O subsistema de transporte tem definido quatro posições distintas para a parada dos

pallets: estação 1, estação 2, estação 3 e estação 4 (ver Figura 20). Para o controle de

movimentação desses pallets tem-se disponível um controlador (Dispositivo de realização

de controle) e dispositivos de atuação e detecção.

39

Figura 20 - Estações de transporte do subsistema

4.1.2. Dispositivos de detecção e atuação

A localização dos pallets é feita através de sinais dos seis dispositivos de detecção

disponíveis em cada estação. Essa informação, associada aos comandos e programa de

controle do controlador, resulta em sinais para os dispositivos de atuação para o

acionamento ou recolhimento das três travas (atuadores) de cada estação. As travas e os

sensores são apresentados na Figura 21.

Figura 21 - Detalhe da trava na entrada da estação e os sensores

4.1.3. Listagem dos sensores

A seguir pode ser vista a listagem dos dispositivos de detecção (sensores) em cada

estação (ver Figura 22 e Tabela 1).

40

Figura 22 - Nomenclatura adotada para os atuadores e sensores da estação de transporte
(adaptado de KANEKO, 2008)

Tabela 1 - Tabela de sensores
Sinal Flag Tipo Descrição Sensor

S_Cil_Estend_1 M 10.0 BOOL Informa que o cilindro da estação 1 esta estendido s4

S_Cil_Estend_2 M 11.0 BOOL Informa que o cilindro da estação 2 esta estendido s10

S_Cil_Estend_3 M 12.0 BOOL Informa que o cilindro da estação 3 esta estendido s16

S_Cil_Estend_4 M 13.0 BOOL Informa que o cilindro da estação 4 esta estendido s22

S_Cil_Recuado_1 M 10.1 BOOL Informa que o cilindro da estação 1 esta recuado s5

S_Cil_Recuado_2 M 11.1 BOOL Informa que o cilindro da estação 2 esta recuado s11

S_Cil_Recuado_3 M 12.1 BOOL Informa que o cilindro da estação 3 esta recuado s17

S_Cil_Recuado_4 M 13.1 BOOL Informa que o cilindro da estação 4 esta recuado s23

S_Ent1-Est1 M 10.2 BOOL informa que o pallet esta na entrada da estação 1 s1

S_Ent1-Est2 M 11.2 BOOL informa que o pallet esta na entrada da estação 2 s7

S_Ent1-Est3 M 12.2 BOOL informa que o pallet esta na entrada da estação 3 s13

S_Ent1-Est4 M 13.2 BOOL informa que o pallet esta na entrada da estação 4 s19

S_Ent2-Est1 M 10.3 BOOL informa que o pallet esta entrando na estação 1 s2

S_Ent2-Est2 M 11.3 BOOL informa que o pallet esta entrando na estação 2 s8

S_Ent2-Est3 M 12.3 BOOL informa que o pallet esta entrando na estação 3 s14

S_Ent2-Est4 M 13.3 BOOL informa que o pallet esta entrando na estação 4 s20

S_Est1 M 10.4 BOOL informa que o pallet esta na estação 1 s3

S_Est2 M 11.4 BOOL informa que o pallet esta na estação 2 s9

S_Est3 M 12.4 BOOL informa que o pallet esta na estação 3 s15

S_Est4 M 13.4 BOOL informa que o pallet esta na estação 4 s21

S_Saida-Est1 M 10.5 BOOL informa que o pallet esta saindo da estação 1 s6

S_Saida-Est2 M 11.5 BOOL informa que o pallet esta saindo da estação 2 s12

S_Saida-Est3 M 12.5 BOOL informa que o pallet esta saindo da estação 3 s18

S_Saida-Est4 M 13.5 BOOL informa que o pallet esta saindo da estação 4 s24

41

Os sensores em vermelho são responsáveis pela identificação da posição dos pallets

nas estações 1 a 4 e se comunicam através da rede ASI. Os sensores em azul são

responsáveis pela identificação do pallet que está em cada uma destas 4 estações e se

comunicam através do protocolo RS-232

4.1.4. Listagem dos atuadores

 Em cada estação temos três dispositivos de atuação (atuadores). Todos os atuadores

são pistões de acionamento pneumático, sendo o primeiro responsável pela retenção do

pallet antes da estação, o segundo pela retenção dentro do pallet da estação e o terceiro

pela estabilização deste quando dentro da estação. Abaixo é possível ver a listagem dos

atuadores do subsistema de transporte (Tabela 2).

Tabela 2 - Tabela de Atuadores
Sinal Flag Tipo Descrição

A_Cil_Ent_Est1 M 20.0 BOOL Permite a entrada do pallet a estação 1

A_Cil_Ent_Est2 M 21.0 BOOL Permite a entrada do pallet a estação 2

A_Cil_Ent_Est3 M 22.0 BOOL Permite a entrada do pallet a estação 3

A_Cil_Ent_Est4 M 23.0 BOOL Permite a entrada do pallet a estação 4

A_Cil_Saida_Est1 M 20.2 BOOL Permite a saída do pallet a estação 1

A_Cil_Saida_Est2 M 21.2 BOOL Permite a saída do pallet a estação 2

A_Cil_Saida_Est3 M 22.2 BOOL Permite a saída do pallet a estação 3

A_Cil_Saida_Est4 M 23.2 BOOL Permite a saída do pallet a estação 4

A_Cil_Trav_Est1 M 20.1 BOOL Permite segurar o pallet a estação 1

A_Cil_Trav_Est2 M 21.1 BOOL Permite segurar o pallet a estação 2

A_Cil_Trav_Est3 M 22.1 BOOL Permite segurar o pallet a estação 3

A_Cil_Trav_Est4 M 23.1 BOOL Permite segurar o pallet a estação 4

4.1.5. Comunicação via ASI - Identificação da posiç ão dos pallets e
acionamento dos pallets

A comunicação do controlador com os dispositivos de atuação e detecção utiliza a

comunicação via ASI e as funções de “mestre” é implementado por um módulo CP342-2

42

(Figura 23) do fabricante Siemens, que permite a interligação física dos sensores e

atuadores.

Figura 23 - Módulo ASI utilizado no projeto (SIEMENS, 2008).

4.1.6. Controlador Programável

 O hardware do dispositivo de realização do controle local (controlador) do subsistema

de transporte é composto por diversas partes. O CLP SIMATIC S7-300 é um controlador

modular amplamente utilizado em aplicações industriais centralizadas ou distribuído de

pequeno a médio porte. A Figura 24 apresenta uma foto do SIMATIC S7-300 e a indicação

dos seguintes elementos: (1) Fonte de energia; (2) Bateria de reserva; (3) Conector 24 V

DC; (4) Chave de operação; (5) Status e falhas (LEDs); (6) Cartão de memória; (7) MPI

(Interface multi-ponto); (8) Conector frontal e (9) Porta da frente.

Figura 24 - SIMATIC S7-300 design (PINHEIRO, 2006).

4.1.7. Comunicação PC - CLP

Uma rede de comunicação é a parte responsável pela comunicação entre o PC e o

CLP. Atualmente, existe uma tendência nos sistemas de controle de processos distribuídos

43

de conectarem os elementos distribuídos através de um único barramento com pontos de

acesso espalhados, ao invés de conexões tradicionais point-to-point. Nesse contexto, as

redes FIELDBUS surgiram como solução para comunicar controladores, sensores e

atuadores, no nível mais baixo da automação (FIELDBUS, 2010).

Neste trabalho, a versão de PROFIBUS utilizada é o PROFIBUS DP, otimizado para

alta velocidade de transmissão e conexão de baixo custo, e que foi projetado especialmente

para a comunicação entre sistemas de controle de automação e elementos distribuídos no

nível de dispositivo (KANEKO, 2008).

4.1.8. DEMAIS SUBSISTEMAS - HARDWARE

Os demais subsistemas que compõem o sistema produtivo (isto é, subsistemas de

alimentação, de inspeção e de montagem) possuem uma configuração de hardware similar

ao do subsistema de transporte, anteriormente descrito. A seguir, a Figura 25 apresenta um

diagrama esquemático dos quatro subsistemas (hardware).

Figura 25 - Diagrama esquemático dos quatro subsistemas (hardware)

44

No sistema produtivo em estudo, o CLP Simatic S7-300 (Figura 25) é o controlador

programável dos subsistemas de transporte e montagem. Similar ao subsistema de

transporte, o PC se comunica com o CLP via PROFIBUS. Paralelamente, os dispositivos de

atuação e detecção (sensores de posição e encoders nos eixos x e y do braço da

montagem) são controlados pelo CLP.

Ressalta-se que o CLP Simatic S7-300, o PC do subsistema de transporte e o PC do

subsistema de montagem estão ligados em uma rede PROFIBUS. Nesse caso, o CLP

controla os dois subsistemas, mas, caso tivéssemos dois CLPs, os PCs poderiam estar em

redes PROFIBUS separadas.

Os subsistemas de inspeção e alimentação possuem uma diferença quanto ao local

físico do CLP. Diferentemente dos outros dois subsistemas, estes possuem um CLP

(Simatic WinAC 412) instalado nos PCs e via PROFIBUS é feita a comunicação com uma

estação modular I/O (Simatic ET200M). Na inspeção e alimentação, os dispositivos de

atuação e detecção se ligam diretamente à estação modular.

4.2. SUBSISTEMA DE TRANSPORTE - SOFTWARE

A seguir, a Figura 26 apresenta um diagrama esquemático do subsistema de

transporte (software).

Figura 26 - Diagrama esquemático do subsistema de transporte (software)

45

A Figura 26 foi enumerada para facilitar o entendimento dos próximos itens do

relatório. A descrição da tecnologia OPC Server (2), utilizada para a comunicação entre o

controlador (1) e a WS (3), é descrita nos itens 4.2.1 e 4.2.2. A seguir, descreve-se o

funcionamento da WS (3), no item 4.2.3; da aplicação Web (4), no item 4.2.4; e por fim, os

modos de operações do usuário (5) no item 4.2.5.

4.2.1. Transferência da lógica de controle para o C LP

A lógica de controle é transferida ao CLP através do software SIMATIC Manager,

uma ferramenta computacional que permite a configuração, programação, compilação e

envio dos programas para o CLP. O SIMATIC Manager permite o uso de três linguagens de

programação: Ladder, Lista de Instruções e Function Block.

Uma vez transferido, o CLP pode executar as funções criadas independentemente

do PC, contudo, no presente trabalho, a conexão com o PC é fundamental para o controle

via internet do CLP. Para que seja possível o acesso remoto das funções programadas foi

feito o mapeamento das variáveis de memória do CLP através da aplicação OPC Scout.

4.2.2. OPC Server

No presente trabalho, o aplicativo OPC Scout foi utilizado para o mapeamento das

variáveis de memória do CLP no PC. Através do servidor OPC criado, o WS (cliente) é

capaz de acessar as informações (status dos sensores e atuadores) e acionar os atuadores.

4.2.3. Web Service do subsistema de transporte

Como já descrito no item 2.1.4, o WS consiste em um conjunto de protocolos

padrões que permitem a criação, distribuição e integração de aplicações na internet. Neste

trabalho, utilizou-se essa tecnologia para a disponibilização das funções de controle do CLP

na internet.

46

4.2.4. Web Site

O Web Site consiste na interface web pela qual o usuário (no caso, o teleoperador)

se comunica com o Web Service por meio da internet, permitindo a leitura dos dispositivos

de detecção e o acionamento dos dispositivos de atuação do sistema flexível. A Figura 27, a

seguir, ilustra a interface criada para o subsistema de transporte.

Figura 27 - Web Site criado para o subsistema de transporte

4.2.5. Teleoperador

Definem-se quatro modos de operação para o usuário: modo automático e manual

(ambos para controle local); e modo de monitoração e teleoperação (ambos para controle

remoto).

No modo local, o usuário pode optar por dois tipos de modos de operação:

automático e manual. No modo manual, o usuário pode executar a mesma sequencia de

funções do modo automático, porém, passo a passo. A implementação desse modo é

possível através do painel de controle disponível nas proximidades do CLP Simatic S7-300,

na estação de montagem e transporte.

O presente trabalho aborda o modo de operação remoto. Nesse modo, o usuário é

denominado como “Teleoperador”. O teleoperador é responsável pela “monitoração”,

definida pelo acompanhamento das atividades do subsistema através de uma interface

47

(Web Site) e deve ser capaz, também, de fazer a “teleoperação”, ou seja, comandar

diretamente as funções do subsistema em local remoto.

4.2.6. DEMAIS SUBSISTEMAS - SOFTWARE

Os demais subsistemas que compõem o sistema produtivo (isto é, os subsistemas de

alimentação, de inspeção e de montagem) possuem uma configuração de software similar

ao do subsistema de transporte, anteriormente descrito. A seguir, a Figura 28 apresenta um

diagrama esquemático dos quatro subsistemas (software).

Figura 28 - Diagrama esquemático dos quatro subsistemas (software)

Resumidamente, os quatro subsistemas utilizam-se do software SIMATIC Manager

para a transferência das lógicas de controle para os CLPs. Neles, o OPC Server garante

que as WSs criadas para cada subsistema acessem as variáveis de memória dos CLPs. Por

fim, no sistema flexível, considera-se que cada subsistema possui um teleoperador

exclusivo que acessa a interface criada, no modo de monitoração ou teleoperação.

48

4.3. INTEGRAÇÃO

Os itens de 4.1 a 4.2 descreveram o funcionamento do hardware e software dos

subsistemas de alimentação, inspeção, transporte e montagem. Essa parte do relatório foca-

se na integração dos quatro subsistemas. A seguir, a Figura 29 ilustra os componentes

hardware e software do SP.

Figura 29 - Componentes hardware e software do sistema flexível

Na integração do sistema produtivo, considera-se que os subsistemas são WSs (A),

ou seja, módulos funcionais que disponibilizam serviços para outros WSs. Os serviços dos

49

WSs são mostrados aos teleoperadores através de uma interface, um Web Site (B). Este

teleoperador (C) pode acessar as funcionalidades de dois modos: monitoração e

teleoperação, anteriormente descritos no item 4.2.5.

Para a coordenação dos serviços disponibilizados por cada WSs, um WS

Coordenador (D) é criado. Sua função é consumir os serviços de cada subsistema de forma

ordenada, a fim de atender aos pedidos do cliente (F). Da mesma forma que os WSs dos

subsistemas, o WS Coordenador possui um Web Site (E) cuja função é disponibilizar ao

cliente as funções do sistema flexível.

4.3.1. Estrutura dos web services

A Figura 30 apresenta os WSs implementados, seus respectivos serviços e os

bancos de dados necessários.

Figura 30 - Estrutura dos WSs

50

Existem sete WSs: (1) WS Cliente, para administração das informações do cliente;

(2) WS Pedido, para administração das informações dos pedidos; (3) WS Coordenação,

responsável pela integração dos WSs; (4) WS de Alimentação, com os serviços do

subsistema de alimentação; (5) WS de Inspeção, com os serviços do subsistema de

inspeção; (6) WS de Transporte, com os serviços do subsistema de transporte; e (7) WS de

Montagem, com os serviços do subsistema de montagem.

Considerou-se, também, necessário a criação de dois bancos de dados: para

registrar as informações do cliente e pedido.

4.3.2. Mapeamento OPC de cada subsistema

Os WSs criados utilizam-se de funções definidas no OPC Server. A seguir, a listagem

do OPC do subsistema de Transporte. Os demais mapeamentos estão no Apêndice B.

Tabela 3 - Mapeamento OPC do Subsistema de Transporte

Nome do item Tipo Acesso

S7:[S7Teleoperacao]Req_Inspecao_Est2 bool RW

S7:[S7Teleoperacao]Saida_autorizada_Est2 bool RW

S7:[S7Teleoperacao]Cor_pedido_Est2_Prata uint16 RW

S7:[S7Teleoperacao]Cor_pedido_Est2_Preta uint16 RW

S7:[S7Teleoperacao]Cor_pedido_Est2_Rosa uint16 RW

S7:[S7Teleoperacao]Cor_pedido_Est2 uint16 RW

S7:[S7Teleoperacao]Resp_req_car bool RW

S7:[S7Teleoperacao]Carro_travado_St3 bool RW

S7:[S7Teleoperacao]Req_peca_st3 bool RW

S7:[S7Teleoperacao]Req_produto_montado_st3 bool RW

S7:[S7Teleoperacao]Saida_Autorizada_St3 bool RW

S7:[S7Teleoperacao]Saida_Autorizada_St3_2 bool RW

4.3.3. Descrição dos web services

A seguir, os serviços dos WS são apresentados nas Figura 31 a Figura 56 os

respectivos diagramas de seqüência.

51

WS ALIMENTAÇÃO

void: Pedido_Peca()

Requisita “corpo” do subsistema de alimentação para o subsistema de inspeção.

Figura 31 – Diagrama de sequência do serviço Pedido_Peca() do WS Alimentação.

WS INSPEÇÃO

int: Pedido_Inspecao()

Requisita inspeção do “corpo” para o subsistema de inspeção.

Retorna: 0, se a cor do “corpo” inspecionado é rosa

 1, se a cor do “corpo” inspecionado é preta

 2, se a cor do “corpo” inspecionado é prata

Figura 32 - Diagrama de sequência do serviço Pedido_Inspecao() do WS Inspeção.

52

void: Envio_Peca()

Indica que a cor inspecionada corresponde à cor de produto do pedido, e requisita

liberação do “corpo” inspecionado para o subsistema de transporte.

Figura 33 - Diagrama de sequência do serviço Envio_Peca() do WS Inspeção.

void: Rejeita_Peca()

Indica que a cor inspecionada não corresponde à cor de produto do pedido, e

requisita o descarte do “corpo” inspecionado.

Figura 34 - Diagrama de sequência do serviço Rejeita_Peca() do WS Inspeção.

void: Expulsar_peca_para_carro()

Indica que existe um pallet travado na estação 2 (subsistema de inspeção), e requisita

a liberação do “corpo” para o pallet.

Figura 35 - Diagrama de sequência do serviço Expulsar_peca_para_carro() do WS
Inspeção.

53

void: Notifica_inspecao()

Informa que o subsistema de inspeção concluiu seu serviço.

Figura 36 - Diagrama de sequência do serviço Notifica_inspecao() do WS Inspeção.

int: Verificar_cor_inspecionada()

Requisita ao subsistema de inspeção a cor do “corpo” que foi inspecionada.

Retorna: 0, se a cor do “corpo” inspecionado é rosa

 1, se a cor do “corpo” inspecionado é preta

 2, se a cor do “corpo” inspecionado é prata

Figura 37 - Diagrama de sequência do serviço Verificar_cor_inspecionada() do WS
Inspeção.

54

WS TRANSPORTE

void: Inspeção_solicita_carro()

Requisita um pallet vazio na estação 2 (subsistema de inspeção).

Figura 38 - Diagrama de sequência do serviço Inspecao_solicita_carro() do WS Inspeção.

void: Informa_Rosa()

Indica que o “corpo” enviado ao pallet travado na estação 2 é rosa.

Figura 39 - Diagrama de sequência do serviço Informa_Rosa() do WS Inspeção.

void: Informa_Preta()

Indica que o “corpo” enviado ao pallet travado na estação 2 é preta.

Figura 40 - Diagrama de sequência do serviço Informa_Preta() do WS Inspeção.

55

void: Informa_Prata()

Indica que o “corpo” enviado ao pallet travado na estação 2 é prata.

Figura 41 - Diagrama de sequência do serviço Informa_Prata() do WS Inspeção.

void: Montagem_solicita_carro_para_montagem()

Requisita um pallet com “corpo” na estação 3 (subsistema de montagem).

Figura 42 - Diagrama de sequência do serviço Montagem_solicita_carro_para_montagem()
do WS Inspeção.

void: Montagem_solicita_carro_para_produto()

Requisita um pallet vazio na estação 3 (subsistema de montagem) para enviar

produto montado.

Figura 43 - Diagrama de sequência do serviço Montagem_solicita_carro_para_produto() do
WS Inspeção.

56

WS MONTAGEM

void: Pegar_Peca()

Informa ao subsistema de montagem que existe um pallet travado com “corpo” na

estação 3, e requisita que o “corpo” seja retirado pelo braço mecânico.

Figura 44 - Diagrama de sequência do serviço Pegar_Peca() do WS Montagem.

void: Montar_rosa()

Informa ao subsistema de montagem que o “corpo” é rosa e deve ser montado com o

“pino” preto, “mola” e “tampa”.

Figura 45 - Diagrama de sequência do serviço Montar_rosa() do WS Montagem.

57

void: Montar_preta()

Informa ao subsistema de montagem que o “corpo” é preto e deve ser montado com o

“pino” prata, “mola” e “tampa”.

Figura 46 - Diagrama de sequência do serviço Montar_preta() do WS Montagem.

void: Montar_prata()

Informa ao subsistema de montagem que o “corpo” é prato e deve ser montado com o

“pino” preto, “mola” e “tampa”.

Figura 47 - Diagrama de sequência do serviço Montar_prata() do WS Montagem.

WS COORDENADOR

void: atualizar_disponibilidade_0()

Informa que o sistema produtivo está ocupado com um produto e, por isso, não está

disponível.

Figura 48 - Diagrama de sequência do serviço atualizar_disponibilidade_0() do WS
Coordenador.

58

void: atualizar_disponibilidade_1()

Informa que o sistema produtivo está não ocupado e, por isso, está disponível para

fazer um produto.

Figura 49 - Diagrama de sequência do serviço atualizar_disponibilidade_1() do WS
Coordenador.

int: obter_disponibilidade()

Informa se o sistema produtivo está disponível ou não para fazer um produto.

Figura 50 - Diagrama de sequência do serviço obter_disponibilidade () do WS Coordenador.

void: Chama_Alimentacao_Peca()

Requisita um “corpo” ao subsistema de alimentação.

Figura 51 - Diagrama de sequência do serviço Chama_Alimentacao_Peca() do WS
Coordenador.

59

void: Resposta_Alimentacao()

Subsistema de alimentação indica que finalizou o envio do “corpo” para o subsistema

de inspeção e verifica se o “corpo” inspecionado equivale ao pedido feito pelo cliente.

Caso seja equivalente ao pedido, aceita o “corpo” e requisita um pallet vazio para a

estação 2. Caso contrário, rejeita o “corpo”.

Figura 52 - Diagrama de sequência do serviço Resposta_Alimentacao() do WS
Coordenador.

60

void: Resposta_Inspecao()

Subsistema de inspeção indica que finalizou a inspeção e requisita ao subsistema de

transporte um pallet com “corpo” na estação 3 (subsistema de montagem).

Figura 53 - Diagrama de sequência do serviço Resposta_Inspecao() do WS Coordenador.

void: Resposta_Carrinho()

Subsistema de Transporte informa que existe um pallet vazio na estação 2

(subsistema de inspeção) e requisita o envio do “corpo” para o pallet.

Figura 54 - Diagrama de sequência do serviço Resposta_Carrinho() do WS Coordenador.

void: Resposta_Carrinho_inicio_montagem()

Subsistema de Transporte informa que existe um pallet com “corpo” na estação 3

(subsistema de montagem) e requisita o envio do “corpo” para o pallet.

Figura 55 - Diagrama de sequência do serviço Resposta_Carrinho_inicio_montagem() do
WS Coordenador.

61

void: Resposta_Telecomando_de_inspecao()

Subsistema de inspeção indica que finalizou a inspeção do “corpo” e verifica se e cor

equivale ao pedido feito pelo cliente. Caso seja equivalente ao pedido, aceita o

“corpo” e requisita um pallet vazio para a estação 2. Caso contrário, rejeita o “corpo”.

Figura 56 - Diagrama de sequência do serviço Resposta_Telecomando_de_inspecao() do
WS Coordenador.

62

void: Requisita_Carrinho_fim_montagem()

Subsistema de Montagem informa que existe um produto pronto e requisita um pallet

vazio na estação 3 para a liberação do produto.

Figura 57 - Diagrama de sequência do serviço Resposta_Carrinho_fim_montagem() do WS
Coordenador.

4.3.4. WS Pedido

O Banco de Dados Pedido é composto por “IDPedido”, “IDCliente”, “número de

peças rosas do pedido”, “número de peças pretas do pedido”, “número de peças pratas do

pedido”, “status do pedido”, “número de peças rosas pendentes”, “número de peças pretas

pendentes” e “número de peças pratas pendentes”. O WS Pedido possui serviços que

manipulam as informações do Banco de Dados Pedido. O WS Pedido possui serviços para

a inclusão, autenticação (verifica se está cadastrado no banco de dados) e consulta dos

pedidos.

void: incluir (string id, string rosaspedido, string pretaspedido, string prataspedido)

int: autenticar (string id, string rosaspedido, string pretaspedido, string prataspedido)

int: obterRosasPedido (int id)

int: obterPretasPedido (int id)

int: obterPratasPedido (int id)

São definidos três status para os pedidos: “pendente” (caso exista peças a serem

montadas), “executando” (peças do pedido não completamente montadas) e “finalizado”

(todas as peças do pedido montadas).

63

object: obterStatus (int id)

int obterRosasPendentes (int id)

int obterPretasPendentes (int id)

int obterPratasPendentes (int id)

Implementou-se também, outros cinco serviços que permitem a atualização do status

dos pedidos e a atualização do número de peças pendentes.

void: atualizarStatusExe (int id)

void: atualizarStatusCon (int id)

void: atualizar_rosaspendentes (int id)

void: atualizar_pretaspendentes (int id)

void: atualizar_prataspendentes (int id)

4.3.5. WS Cliente

O Banco de Dados Cliente é composto por dois tipos de informações dos clientes:

“login” e “senha”. O WS Cliente possui serviços que manipulam as informações do Banco de

Dados Cliente. O WS Cliente possui serviços para a inclusão, autenticação (verifica se está

cadastrado no banco de dados) e consulta dos dados cadastrados.

void: incluir (string login, string senha)

void: autenticar (string login, string senha)

dataset: obter(int id)

4.3.6. Observador do Pedido

Os web services são módulos funcionais que disponibilizam os serviços na internet.

O uso de suas funcionalidades depende de um cliente que consuma seus serviços, caso

contrário, o WS fica inativo. Na integração do sistema flexível fez-se necessário a criação de

um “Observador do Pedido”, um aplicativo que irá ficar ativo enquanto o sistema estiver

operando.

64

A aplicação consulta freqüentemente o Banco de Dados Pedido e verifica se existem

pedidos pendentes cadastrados. Caso exista pedido pendente, verifica a disponibilidade do

sistema produtivo. Se disponível, a aplicação requisita o serviço

Chama_Alimentacao_Peca() do WS Coordenador. A seguir, o diagrama de seqüência do

Observador de Pedido:

Figura 58 - Diagrama de sequência do Observador de Pedido.

65

O Aplicativo Windows (Windows Application) foi desenvolvido em Visual Studio e em

Microsoft .NET Framework 4.0. Uma interface foi criada para o Observador de Pedido

(Figura 59). Para iniciar o aplicativo, o usuário deve selecionar a opção “Iniciar”.

Figura 59 - Observador de Pedido.

4.4. IMPLEMENTAÇÃO

A estrutura do software de controle do subsistema de transporte (Figura 60) pode ser

vista como um conjunto de camadas. Na camada inferior estão os programas que

processam os sinais de entrada e saída (I/O) gerados pelos dispositivos de atuação e

detecção. Logo acima desta camada está o programa que executa as funções de controle

local, que é realizado pelo controlador (SIMATIC S7-300). Na camada acima está o

programa supervisório local que gerencia as tarefas do subsistema de transporte e do

subsistema de montagem. Este programa supervisório é executado em um PC ligado a

internet. Acima do supervisório temos os WSs do sistema produtivo e do teleoperador que

são acessados através da internet.

Figura 60 - Estrutura do Software de controle do sistema produtivo

66

4.4.1. Descrição das funções de controle

A interface homem-máquina (IHM) se refere a uma implementação de dispositivos de

monitoração e dispositivos de comando disponibilizados pelo SP para o usuário (cliente ou

teleoperador). Em outras palavras, esta interface é implementada num computador de modo

que o usuário tem disponibilizado na tela do computador, ícones que indicam o estado de

elementos como lâmpadas e botões switches, sendo que o teclado do computador é usado

para os comandos.

Esta interface no contexto do SP disperso deve estar disponível tanto para

“operadores” que podem estar em locais remotos e distintos do local onde estão as

máquinas do SP, como para “clientes” e “supervisores” que solicitam a manufatura de

produtos e desejam acompanhar o processo produtivo de seus pedidos. Estes “clientes”, em

geral, estão em locais distintos das instalações do SP e podem apenas acompanhar os

processos produtivos. Os “supervisores”, que também estão, em geral, em locais remotos,

além de acompanhar os processos produtivos devem, em situações específicas de

ocorrência de imprevistos, terem condições de interferir no processo produtivo.

Os requisitos do sistema envolvem a definição das condições ou capacidades que

devem ser atendidas por um sistema para implementar funcionalidades e processos

requeridos pelos usuários. Estes requisitos podem ser classificados em: (a) requisitos

funcionais, baseados nas funcionalidades a serem implementadas no sistema; (b) requisitos

operacionais, relacionadas aos processamentos a serem executados, desempenho e

localização do sistema; (c) requisitos de contingência, como tarefas alternativas para o caso

de indisponibilidade do sistema; (d) requisitos técnicos, baseados nas restrições quanto à

arquitetura do sistema e às ferramentas e linguagens implementadas; e (e) requisitos não-

funcionais (FERNANDES, 2005). Quanto aos requisitos do sistema considerado neste

projeto, a arquitetura, conhecida como SOA, deve garantir as funcionalidades desejadas. Na

Tabela 4, listam-se alguns requisitos não funcionais que devem ser considerados:

Tabela 4 - Descrição de alguns requisitos não-funcionais (adaptado de FERNANDES, 2005)

Reusabilidade Uso de módulos na implementação do sistema, que permite a

reutilização destes em outras aplicações.

Multimodalidade Uso de diversos canais de comunicação, como visual, tátil, auditiva

e motora, para apresentação de informação ou interação com o

usuário.

67

Usabilidade Refere-se ao grau de facilidade oferecido para que um usuário

aprenda a operar, fornecer entradas e interpretar saídas de um

componente ou do sistema como um todo.

Extensibilidade Capacidade de ampliar o sistema, pela incorporação de novas

funcionalidades, pelo aumento da capacidade de armazenamento,

etc.

A fim de especificar os requisitos do sistema, considera-se a utilização do PFS e da

UML. A seguir, descreve-se a modelagem conceitual e funcional do subsistema de

transporte.

Para especificar o subsistema de transporte, fez-se necessária uma descrição

explícita dos processos produtivos deste subsistema. O subsistema de transporte possui

quatro posições distintas para a parada dos pallets (estação 1, estação 2, estação 3 e

estação 4), e com relação a cada uma das estações, o pallet pode ser visto como se

estivesse em três situações distintas: “antes da estação” (A.E.), “na estação” (N.E.) e

“depois da estação” (D.E.). Estas situações são ilustradas na Figura 61.

No estado inicial do subsistema, assume-se que os pallets ficam acumulados em fila

antes da estação 1. Após uma peça “corpo” sair do subsistema de alimentação e ser

aprovada pelo subsistema de inspeção, o subsistema de inspeção envia um sinal para o

supervisor geral do SP disperso que, de acordo com seu plano de produção, pode enviar um

pedido de serviço para o subsistema de transporte, requisitando o transporte do “corpo” para

o subsistema de montagem. Dessa forma, um pallet deve atravessar a estação 1, recolher o

“corpo” na estação 2 e o transportar para a estação 3, onde o pallet deve aguardar a retirada

do “corpo”. Quando o subsistema de montagem envia um sinal para o supervisor geral

indicando que já completou a montagem de um produto, este pode enviar um pedido de

serviço ao subsistema de transporte para que um pallet vazio seja enviado à estação 3.

Quando o pallet já está na estação 3, o subsistema de montagem pode enviar o produto

para a estação 4 (de armazenagem).

Figura 61 - As três situações de um pallet em relação a cada estação de parada

68

Dessa forma considera-se que o subsistema de transporte é responsável pela

execução de dois serviços: (a) transportar a peça “corpo” do subsistema de inspeção até o

subsistema de montagem e (b) retirada do produto montado do subsistema de montagem.

No primeiro caso, como já mencionado, o responsável pelo envio da ordem de

serviço é um supervisor que depois de comprovar a aprovação do “corpo” pelo subsistema

de inspeção, envia uma ordem de serviço para o subsistema de transporte. Em seguida, o

subsistema de transporte verifica a disponibilidade de pallets antes da estação 1, e caso

essa disponibilidade se confirme e não exista um pallet na estação 1, um dos pallets

disponíveis é enviado para a estação 2. Caso já exista um pallet na estação 1, nenhum

pallet é transportado até a estação 1. Quando existe um pallet na estação 1, o subsistema

verifica se a estação 2 está ocupada com um pallet ou se está livre. Caso a estação 2 esteja

ocupada, o pallet na estação 1 deverá ser mantido nesta estação. Caso contrário, o pallet é

enviado para a estação 2. Quando o pallet está na estação 2, o subsistema verifica se o

pallet já recebeu a peça tipo “corpo”. Depois dessa situação ser confirmada, o subsistema

verifica se a estação 3 está ocupada com um pallet ou se está livre. Caso a estação 3 esteja

ocupada, o pallet na estação2 deverá ser mantido nesta estação. Caso contrário, o pallet é

enviado para a estação 3. Na estação 3, o pallet aguarda a retirada do “corpo” pelo

subsistema de montagem, e agora em estado vazio espera pelo novo comando do

supervisor.

No segundo caso, o subsistema de montagem, requisita ao supervisor a retirada do

produto (montado) final. Se já existe um pallet vazio na estação 3, a este pallet deve ser

atribuído o serviço de retirada do produto (montado) final. Verifica-se assim se o produto

final já está carregado no pallet que está a estação 3. Caso isso se confirme, o subsistema

de transporte leva o pallet até a estação 4, espera que o produto final seja retirado e vai

para a fila de pallets antes da estação 1.

4.4.2. Production Flow Schema

Na modelagem conceitual, considera-se o PFS (Production Flow Schema). A Figura

62 ilustra o PFS do subsistema de transporte. Nesse grafo, o supervisor é responsável pelo

controle da movimentação dos pallets pelas estações 1, 2, 3 e 4.

69

Figura 62 - PFS do subsistema de transporte

O PFS indica os estados e as atividades executadas sobre as peças no sistema

produtivo. Os “corpos” estão armazenados em um buffer inicial. Após a alimentação,

passam por um processo de inspeção de altura e cor. Em seguida, esses “corpos” são

colocados sobre os pallets e atravessam as estações do subsistema de transporte (na

ordem, estação 2, estação 3, estação 4 e estação 5), até ser requisitado pelo subsistema de

montagem, na estação 3. Por fim, após a montagem, o produto é de novo colocado sobre

um pallet e enviado para armazenagem, na estação 4.

4.4.3. Configuração no SIMATIC Manager

O ambiente de desenvolvimento para a lógica de controle é o SIMATIC Manager.

Após a criação de um projeto, deve-se configurar o hardware, software e o protocolo de

comunicação entre o PC e o CLP. A Figura 63 mostra os componentes configurados no

projeto “Transporte”:

70

Figura 63 - Configuração do SIMATIC Manager.

Faz-se necessário destacar que dois servos motores são utilizados no subsistema de

montagem para movimentação de um braço mecânico. No sistema produtivo, o subsistema

de transporte e o subsistema de montagem estão conectados a uma mesma rede

PROFIBUS. Com o intuito de tornar o projeto flexível para a programação dos dois

subsistemas, configuraram-se os módulos FM 354 (drives dos servos motores) no projeto do

subsistema de transporte, além da CPU 315-2 DP e o módulo CP353.

Uma vez adicionado os componentes hardwares ao projeto é necessário a

configuração deles. A Figura 64 mostra o mapeamento dos módulos de hardware do projeto:

Figura 64 - Configuração de hardware.

71

A configuração de cada módulo pode ser feita individualmente. A Figura 65 ilustra a

janela de configuração da CPU 315-2 DP. Diferentes propriedades são configuradas, tais

como interrupções de hardware, sincronização de clock e tempo de monitoramento de scan

cycle:

Figura 65 - Janela de configuração da CPU 315-2 DP

Adicionalmente, configura-se a rede de comunicação entre o PC e o CLP. O

protocolo utilizado é o PROFIBUS-DP. A Figura 66 indica a configuração:

Figura 66 - Rede de comunicação entre o PC e o CLP

72

A Figura mostra o PC, nomeado como “PMRLSA-013” e o CLP Simatic S7-300 na

rede PROFIBUS. Na configuração do PC considerou-se o servidor OPC e o cartão CP5613-

A2, responsável pela comunicação do computador com a rede PROFIBUS. Na configuração

do CLP considerou-se a CPU315, os módulos CP 343-5 e FM354, descritos anteriormente.

4.4.4. Lógica de controle no SIMATIC Manager

A programação das funções de controle no controlador (SIMATIC S7-300) é

realizada através do pacote de softwares STEP 7. No caso foi adotada a linguagem Ladder,

uma linguagem gráfica baseada na lógica de relês.

Resumidamente, o projeto do Step 7 é dividido em “blocos”. Os “blocos” são parte do

programa e se distinguem pela sua função, estrutura e propósito. O STEP7 permite a

criação dos seguintes tipos de “Blocos”: (a) blocos lógicos (FB, FC, OB, SFB, SFC) e (b)

bloco de dados (DB, SDB). A Figura 67 ilustra os blocos lógicos e blocos de dados no

SIMATIC Manager.

Figura 67 - Blocos do STEP7

Como exemplo, para a identificação dos pallets, utilizou-se um DB (ou “Data Base”)

que é um tipo de bloco de dados. Na Figura 68, identifica-se o endereço da memória, ID dos

pallets e o registro em hexadecimal lido pelo sensor.

Figura 68 - Data Base para identificação do pallet

Como dito anteriormente, utilizou-se a linguagem Ladder para o desenvolvimento do

programa de controle local. O programa completo encontra-se em anexo.

73

4.4.5. Teste do programa através do SIMATIC Manager

O aplicativo Simatic Manager possui uma funcionalidade chamada Tabela de

Variáveis (VAT – do inglês VAriable Table). Na VAT é possível mapear as variáveis do

programa e monitorar seu estado, sendo possível modificar o estado de variáveis de

entrada. Durante a realização dos testes a VAT foi utilizada para verificar a consistência das

saídas de acordo com as entradas e o estado do subsistema.

No subsistema de transporte são utilizados sensores que identificam a posição dos

pallets em cada estação, que se comunicam através da rede ASI. Os sensores de posição

representam saídas que devem ser lidas pelo sistema e serão importantes para o controle

dos pistões que regulam a lógica de entrada e saída das estações.

Os testes iniciais foram realizados individualmente em casa estação, de forma a

regular a seqüência de acionamentos dos pistões para a entrada e saída de cada estação.

Partindo da lógica de recirculação dos carrinhos o próximo passo foi testar o funcionamento

nesta situação variando as solicitações nas diferentes estações.

Figura 69 - Tabela de Variáveis para a estação 3

74

Figura 70 - Tabela de Variáveis para a estação 4

4.4.6. Teste do programa através do SP

Para o teste do programa através do sistema produtivo disperso é necessário a

habilitação do OPC Server e o cartão de comunicação CP5613-A2 no modo “RUN”. A Figura

71 mostra o Station Configuration Editor que possibilita essa configuração:

Figura 71 - Station Configuration Editor

75

4.4.7. Mapeamento no OPC Server

Após a conclusão dos testes do subsistema de transporte e a habilitação para modo

“RUN” do OPC Server no Station Configuration Editor, é feito o mapeamento das funções de

controle. Para isso, utiliza-se o OPC Scout, um aplicativo da Siemens. Terminado o

mapeamento das funções de controle no OPC Server, foi possível a criação da WS que se

utiliza dessas lógicas em seus serviços. A WS criada para o subsistema de transporte é

descrita no item 50.

4.5. INTERFACES DO CLIENTE

Feito a integração dos subsistemas, desenvolveu-se a tela de interface do cliente.

Define-se como tela de interface, o web site que permite o acesso do cliente, inclusão e

acompanhamento dos pedidos de produtos. O fluxograma dos estágios de acesso do cliente

no web site foi modelado como ilustra a Figura 72.

Figura 72 Fluxograma de acesso

 O web site foi desenvolvido na linguagem C# e optou-se pela plataforma .NET do

software Microsoft Visual Studio 2010. Um banco de dados foi criado para a manipulação

76

dos dados do cliente e dos seus respectivos pedidos no Microsoft Office Access 2003. A

seguir, descreve-se o funcionamento do web site.

4.5.1. Página principal

 Na página principal do web site (Figura 73), o cliente insere o seu login e senha e

confirma os dados clicando no botão “Entrar”.

Figura 73 - Página principal

 Caso o cliente tenha colocado alguma informação de acesso errada ou não possua

cadastro no sistema, surgirá a mensagem: “Cliente não encontrado. Tente novamente ou

realize seu cadastro” (na Figura 74). Para realizar um novo cadastro, o cliente deve

selecionar a opção “Crie uma nova conta”.

Figura 74 - Página Principal – Cliente não encontrado.

77

4.5.2. Novo cadastro

Na página destinada à realização de novos cadastros (Figura 75), o cliente deve

definir um login e uma senha. O cadastro é confirmado com a opção “Inserir”.

Figura 75 - Novo Cadastro.

 Após a inserção do novo cadastro, o Cliente recebe o número de seu cadastro

(Figura 76). Este número será utilizado para o cadastro do pedido. Em seguida, o cliente

pode retornar à página principal com a opção “Voltar”.

Figura 76 - Novo Cadastro – Cadastro realizado.

78

4.5.3. Página do cliente

 Com a confirmação do login e a senha, o cliente é direcionado para a página na qual

deverá fazer a opção pela inclusão de um novo pedido ou a consulta dos pedidos já

cadastrados, através dos botões “Novo Pedido” e “Consultar Pedido” (Figura 77).

Figura 77 - Página do cliente.

4.5.4. Cadastro de pedido

 Ao clicar em “Novo Pedido”, o cliente é direcionado para à pagina de cadastro de

pedidos (Figura 78). O cliente deverá escrever o número de produtos rosa, preta e/ou prata

que deseja e, adicionalmente, informar o número do cadastro (fornecido no cadastro do

login e senha).

Figura 78 - Cadastro de pedido.

79

 Após a inserção do novo pedido (Figura 79), uma mensagem informará o número do

pedido. Este número será utilizado para o acompanhamento do pedido.

Figura 79 - Cadastro de pedido – Cadastro realizado.

4.5.5. Acompanhamento de pedido

 Adicionalmente, caso o cliente após fazer o login, clique em “Consultar Pedido”, o

cliente será direcionado a pagina de acompanhamento de pedido (Figura 80). O cliente

deverá escrever o número do pedido e selecionar “Ir”.

Figura 80 - Acompanhamento do pedido.

80

 No caso do número do pedido indicado pelo cliente não se refira a nenhum pedido

cadastrado no banco de dados, uma mensagem surgirá: “Pedido não encontrado, tente

novamente”.

Figura 81 - Acompanhamento do pedido – Pedido inexistente.

 Caso o número de pedido se refira a um pedido cadastrado, inicialmente, antes de

iniciar a produção nos subsistemas, o status do pedido indicará “pendente” (Figura 82). Com

o início da produção, o status recebe “executando”; e após a produção de todos os

produtos, indicará “concluído”.

Figura 82 - Acompanhamento do pedido – Status: pendente.

81

5. CONCLUSÃO

O trabalho consistiu na implementação da interface homem-computador para as

funções de monitoração e teleoperação do subsistema de transporte e na integração desse

subsistema com os outros 3 subsistemas do sistema de manufatura automatizado instalado

na EPUSP. A integração dos subsistemas foi feito através da criação de WSs.

A lógica do subsistema de transporte apresenta grande grau de complexidade devido

à necessidade de coordenar o funcionamento do sistema em função de todas as estações.

Por sua vez a aplicação de WSs diminui a complexidade de integrar este aos demais

subsistemas devido à sua característica de modularidade, permitindo testes isolados e

correções de forma mais simples.

A criação de camadas permite a integração entre as diferentes subestações, que

representam plantas dispersas geograficamente. A primeira camada está relacionada ao CP

e é responsável por garantir o funcionamento das funcionalidades de cada fábrica ou célula.

A segunda camada é formada pelos WSs e permite a integração destas funcionalidades

bem como sua disponibilização na internet sob a forma de serviços. Por fim a terceira

camada é responsável por garantir a interface com o cliente e o teleoperador, através de

páginas Web.

Enquanto as camadas inferiores garantem o funcionamento das funcionalidades de

cada fábrica a camada superior, dos WSs, permite a integração destas funcionalidades

através da publicação sob a forma de serviços.

Dentre as vantagens da implementação em camadas, temos: a padronização do

código, a facilidade para encontrar problemas e a facilidade para dividir a programação em

partes e ser trabalhada simultaneamente.

Devido ao enfoque do trabalho as partes voltadas ao cliente foram pouco

desenvolvidas, porém o tipo de sistema estudado levanta uma gama de questões relevantes

a serem estudadas, podendo-se destacar a interface do cliente e a segurança do sistema na

colocação.

Os WSs se mostram um ótimo modo de criar e integrar serviços a través da internet.

Sua aplicação é ampla, podendo ser aplicada a diferentes tipos de serviços disponibilizados

ou não na rede, criando um servidor local. É possível verificar a facilidade de integração

entre os diferentes subsistemas, suportando a hipótese de que os WS são uma ferramenta

eficaz para aplicação em SPs dispersos, bem como diferentes sistemas que exijam a

integração de diferentes serviços.

82

Do ponto de vista da aplicabilidade é necessário levar em consideração a tecnologia

de internet disponível no local das plantas, sobretudo no que tange a confiabilidade. A fim de

garantir bons resultados a implementação deste projeto se insere no contexto do programa

TIDIA-Kyatera, que oferece a infra-estrutura mais adequada, baseada em uma rede de fibra-

ótica de alta velocidade. Devido à variabilidade na qualidade das redes ao redor do mundo

seria necessário um estudo prévio de acordo com as áreas abrangidas.

Para a criação do coordenador foi estudada a aplicação do Windows Workflow Foundation

(WWF), um ambiente da plataforma .NET que possibilita a programação através de

fluxogramas no software Microsoft Visual Studio. Seu funcionamento se baseia em

fluxogramas que podem coordenar as chamadas aos WSs e representa outra forma de

implementar o projeto aqui proposto. Dentre as vantagens do uso dessa aplicação, citam-se

a facilidade do entendimento sobre o processo através de uma representação visual, e

conseqüentemente, uma maior possibilidade de otimização do processo.

83

6. REFERÊNCIAS BIBLIOGRAFICAS

ALTUS. Nota de aplicação P35. Disponível em:

<http://www.altus.com.br/ftp/Public/Portugues/Notas%20de%20Aplicacao/NAP035%20-

%20Exemplo%20Utilizacao%20Gateway%20PROFIBUS-DP_AS-

I%20e%20Modulo%20Ponto%20AS-I%20IP67/NAP035.PDF>. Acesso em Setembro de

2008.

BARROS, Ettore Apolônio de. Sistemas Dinâmicos para Mecatrônica. São Paulo: EPUSP-

PMR, 2008. Notas de aula para disciplina de graduação do Departamento de Engenharia

Mecatrônica e de Sistemas Mecânicos, PMR2320 – Sistemas Dinâmicos para Mecatrônica.

CHENG, H. K.; TANG, Q. C.; ZHAO, J. L. Web services and service-oriented application

provisioning: an analytical study of application service strategies. IEEE: Transactions on

engineering management, n. 53, n. 4, p. 520-533, nov. 2006.

CHWIF, L. Utilizando simulação de eventos discretos em projetos de sistemas

automatizados de manufatura. In: CONGRESSO INTERNACIONAL DE AUTOMAÇÃO, 10.

2002, São Paulo. Anais: CONAI, 2002

CURY, J. E. R. Teoria de Controle Supervisório de Sistemas Discretos. Apresentado no V

Simpósio Brasileiro de Automação Inteligente, Canela, RS, Brasil, Novembro de 2001.

Dispoível em: <http://www.faatesp.edu.br/publicacoes/controle.pdf>

FAPESP. Linha de Fomento à Pesquisa para Inovação Tecnológica. Disponível em:

<http://www.fapesp.br/materia/52/pesquisa-para-inovacao/linha-de-fomento-a-pesquisa-

para-inovacao-tecnologica.htm>. Acesso em: 19 fev. 2010.

FERNANDES, D. B. Análise de sistemas orientada ao sucesso: por que os projetos atrasam.

São Paulo: Editora Ciência Moderna, 2005.

FIELDBUS Foundation – History. Disponível em:

<http://www.fieldbus.org/index.php?option=com_content&task=view&id=136&Itemid=307>.

Acesso em: 20 nov. 2010.

84

KANEKO, A. M. Desenvolvimento de uma interface gráfica para supervisão de um sistema

produtivo teleoperado. Trabalho de formatura. Escola Politécnica da Universidade de São

Paulo. 2008.

KANO, C.H. et al. Framework para sistema colaborativo de tele-operação de sistemas

produtivos. In: SIMPÓSIO BRASIL-JAPÃO 2009 – Encontro anual da SBPN, 18, 2009, São

Paulo. Anais: SBPN, 2009. p. 96 – 97.

KYATERA. Fiber to the lab – Viabilizando a pesquisa colaborativa. Disponível em:

<http://kyatera.incubadora.fapesp.br/portal/kyatera/view?set_language=pt-br>. Acesso em:

19 fev. 2010.

LING, Z., CHEN, W., YU, J., Research and Implementation of OPC Server Based on Data

Access Specification, Apresentado no 5º Congresso Mundial de Controle e Automação

Inteligente, Hangzhou, P.R. China, Junho de 2004. Disponível em

<http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1340887>

LSA. Laboratório de pesquisa do PMR – Laboratório de Sistemas de Automação. Disponível

em: <http://www.pmr.poli.usp.br/lsa/>. Acesso em: 23 fev. 2010.

MAIBASHI, G. Y.; SAITO, M. M. Sistema de teleoperação de manufatura via internet.

Trabalho de formatura. Escola Politécnica da Universidade de São Paulo, 2009.

MARCHENTA, M. M. L. Controle de manufatura via internet. Trabalho de formatura. Escola

Politécnica da Universidade de São Paulo, 2009.

MELO, J. I. G.; Junqueira, F.; Morales, R.; Miyagi, P.E. A procedure for modeling and

analysis of service-oriented and distributed productive system. In: CASE, IEEE, Washington,

2008

MIYAGI, P. E., Controle Programável - Fundamentos do Controle de Sistemas a Eventos

Discretos. São Paulo: Editora Edgard Blücher, 1996.

MIYAGI, P. E. ; JUNQUEIRA, F. ; GARCIA MELO, J. I. ; SANTOS FILHO, D. J. Internet

based manufacturing and disperse productive systems. In: Brazilian Conference on

Dynamics, Control and Applications, 2009, Bauru, SP.

85

OGATA, K. Engenharia de controle moderno. 4ª edição. São Paulo: Pearson Prentice Hall

do Brasil, 2006.

OPC Foundation – About OPC – What’s OPC?. Disponível em:

<http://www.kepware.com/Menu_items/industry_OPC_Foundation.asp>. Acesso em 09 out.

2010.

PAMPLONA, V. F. Web Services – Construindo, disponibilizando e acessando webservices

via J2SE e J2ME. Disponível em: <http://javafree.uol.com.br/artigo/871485>. Acesso em: 24

mar. 2010.

PINHEIRO, Bruno de Lima. Implementação de um ambiente para simulação distribuída de

sistemas produtivos. 2006. Trabalho apresentado à Escola Politécnica da USP para

obtenção do título de Engenheiro.

PROFIBUS. Site oficial da organização nacional de usuários de comunicação Profibus,

2006. Disponível em: <www.profibus.org.br>. Acesso em: 04 abr. 2010.

SCHEISS, C. Emulation: Debug it in the lab – not on the floor. In: PROCEEDINGS OF THE

WINTER SIMULATION CONFERENCE, 2001. Anais: WSC, 2001. p. 1463-1465.

SIXTH FRAMEWORK PROGRAMME. Socrades Brochure. Disponível em:

<http://www.socrades.eu>. Acesso em 03 jan. 2010.

SOUIT, S. Ambiente distribuído para monitoração e operação remota de sistemas

produtivos. Trabalho de formatura. Escola Politécnica da Universidade de São Paulo, 2009.

TALLARD GROUP. B2B. Disponível em:

<http://www.itec.com.br/semanal/NewSA400B2B.htm>. Acesso em: 24 mar. 2010.

TOVAR, E.; VASQUES, F. Real-time fieldbus communications using profibus networks.

IEEE: Transactions on industrial eletronics, v. 46, n. 6, dez. 1999.

VILLANI, E., MIYAGI, P.E., VALETTE, R.: Modelling and analysis of hybrid supervisory

systems. London, UK: Springer, 2007.

86

APÊNDICE A – Metodologia de projeto adotada

Em projetos de qualquer natureza podem-se identificar tarefas específicas,

organizando-as em termos de natureza, precedência, dependência, entre outros. Diferentes

métodos podem ser utilizados na realização dessas tarefas que podem necessitar do uso de

ferramentas diferentes. Pode-se entender por método o conjunto dos meios dispostos

convenientemente para alcançar um fim e especialmente para chegar a um conhecimento

científico e ou comunicá-lo aos outros (MICHAELIS, 1998). Em um projeto pode-se dizer

que o método é o conjunto de passos que se tem de tomar visando atingir um determinado

objetivo de uma tarefa dentro do projeto. Desta forma a metodologia é aqui entendida como

um conjunto devidamente organizado de métodos. Dessa forma, no presente projeto,

adotou-se a metodologia de projeto de sistemas de controle apresentada em (MIYAGI,

1996).

Figura 83 - Ciclo de vida (adaptado de MIYAGI, 1996)

A metodologia adotada considera o conceito de “ciclo de vida” no projeto de sistemas

de controle. Assim, o sistema pode ser dividido em duas fases: fase de projeto (ou

87

desenvolvimento) e fase de implementação (MIYAGI, 1996). Um esquema do ciclo de vida é

apresentado na Figura 83, com os procedimentos necessários para cada uma das etapas do

ciclo de vida.

O presente projeto segue as etapas propostas para o ciclo de vida do sistema de

controle:

1) Identificação do objetivo final do sistema - Diferentes abordagens podem ser

adotadas para a identificação do objetivo final: abordagem no nível de

especificação do sistema, de recursos humanos, específico de um certo domínio

da produção, específico de um certo orçamento de desenvolvimento ou

específico de um certo cronograma de desenvolvimento e implantação (MIYAGI,

1996). No caso o objetivo final desse projeto é o desenvolvimento de uma

interface homem-computador para o subsistema de transporte, bem como sua

integração aos demais subsistemas que fazem parte de um sistema de

manufatura automatizado instalado na Escola Politécnica da Universidade de

São Paulo (EPUSP)

2) Compreensão do objeto de controle, instalações e eq uipamentos - Estudo

das funções e características de cada elemento e as inter-relações entre eles

(MIYAGI,1996). Para isso, devem ser gerados o diagrama estrutural

(esquemático) do objeto de controle, a lista dos atuadores, detectores e

intertravamentos, e o diagrama da infraestrutura necessária. O objeto de controle

é a bancada de emulação, constituída de sensores e atuadores;

3) Organização dos conhecimentos sobre o sistema de co ntrole –

Levantamento das técnicas de programação e especificações dos dispositivos de

controle e os equipamentos periféricos (número de pontos de entrada e saída,

capacidade de memória de dados e de programa, velocidade de processamento)

(MIYAGI, 1996);

4) Abstração e análise das funções de controle – Análise das funções desejadas

pelo objeto de controle, requisitos da intervenção do homem (como os modos de

operação e monitoração das instalações e equipamentos) (MIYAGI, 1996). Deve-

se gerar aqui um diagrama estrutural de inter-relacionamento, onde é possível

verificar as funções e sua abrangência, tal como correções a serem feitas;

88

5) Definição das funções de controle – Primeiramente, faz-se um levantamento

das especificações dos dispositivos de atuação, detecção, comando e

monitoração. Estas funções podem ser classificadas em: função de inicialização

da operação, de seleção do modo de operação, de seleção do local de operação,

de sinalização, de comando, de medição, de sinalização de falha ou alarme

(MIYAGI, 1996). Deve-se gerar aqui o diagrama das funções de controle, a lista

dos dispositivos de atuação, de detecção e de comando/monitoração;

6) Definição do fluxo das funções de controle – Definição dos procedimentos

que ativam as funções de controle anteriormente definidas (MIYAGI, 1996).

Deve-se gerar aqui as representações em PFS (Production Flow Schema) e MFG

(Mark Flow Graph), que são versões da rede de Petri próprias para a aplicação

em diferentes níveis de modelagem, análise e controle do SP;

7) Divisão das funções e definição das interfaces – Definição do tipo e

quantidade de dispositivos de controle a serem apresentados na interface do

teleoperador (para os dois modos de operação: teleoperação e monitoramento) e

na interface do cliente que fará os pedidos de produtos (peças montadas);

8) Definição e alocação dos sinais de entrada e saída – Levantamento e

especificação das entradas e saídas (por exemplo, velocidade de resposta,

imunidade a ruídos, confiabilidade dos contatos, capacidade de carga) (MIYAGI,

1996). No caso temos como entradas e saídas os sinais respectivamente dos

instrumentos de atuação e de detecção;

9) Definição da estrutura do programa de controle - O controle de sistemas é

resultado da interconexão de componentes numa configuração que fornece um

desempenho desejado, considerando os fatores limitantes, como a complexidade

do controle, distúrbio e erros de modelagem (MARUYAMA, 2007). Dessa forma,

o software de controle é responsável pelo controle em tempo real do sistema,

através de dispositivos como os controladores, com a execução de ações a partir

de uma seqüência pré-programada e a especificação de intertravamentos

(SANTOS FILHO, 2006);

10) Projeto da reutilização – Deve-se adotar uma organização da programação

em módulos funcionais para atender a futuras modificações dos projetos de

softwares para equipamentos similares (MIYAGI, 1996);

89

11) Projeto dos programas – Desenvolvimento de módulos funcionais “macro”

compostos por vários módulos funcionais e integrados num programa principal

que controla estes módulos funcionais (MIYAGI, 1996). A função do supervisor é

realizar o controle desses módulos;

12) Projeto de programas não padronizados – Deve-se implementar a

modularização das funções criadas, mesmo que utilizada apenas uma única vez.

Essa modularização pode ser vista na implementação de funções básicas e WSs

que são requisitados pelo supervisor;

13) Desenvolvimento do programa e seu carregamento nas máquinas –

Quando é realizado um projeto iterativo através de ferramentas de apoio ao

projeto, a conversão do programa-fonte (em diagrama de relés, PFS/MFG, etc)

para o programa-objeto (em linguagem própria de cada CLP) é automática

(MIYAGI, 1996). No presente projeto a programação é realizada no SIMATIC

Manager através da linguagem Ladder, que é transcrita para código através do

próprio programa;

14) Teste por unidade e do sistema – Execução do programa de controle de cada

módulo, e em seguida, do sistema.

90

APÊNDICE B – Mapeamento OPC dos Subsistemas de Alim entação,
Inspeção e Montagem

Os WSs criados utilizam-se de funções definidas no OPC Server. A seguir, a listagem

dos OPCs do subsistema de Alimentação, Inspeção e Montagem, respectivamente.

Tabela 5 - Mapeamento OPC do Subsistema de Alimentação

Nome do item Tipo Acesso

S7:[S7TeleOpAlimentacao]mReq_Desligar_Ventosa bool RW

S7:[S7TeleOpAlimentacao]mReq_Estender_Cilindro bool RW

S7:[S7TeleOpAlimentacao]mReq_Ligar_Ventosa bool RW

S7:[S7TeleOpAlimentacao]mReq_MovAntiHorarioBraço bool RW

S7:[S7TeleOpAlimentacao]mReq_MovHorarioBraço bool RW

S7:[S7TeleOpAlimentacao]mReq_Recuar_Cilindro bool RW

S7:[S7TeleOpAlimentacao]mReset bool RW

S7:[S7TeleOpAlimentacao]mTelDesliga_Ventosa bool RW

S7:[S7TeleOpAlimentacao]mTelEstende_Cilindro bool RW

S7:[S7TeleOpAlimentacao]mTelLiga_Ventosa bool RW

S7:[S7TeleOpAlimentacao]mTelMovAntiHorario_Braço bool RW

S7:[S7TeleOpAlimentacao]mTelMovHorario_Braço bool RW

S7:[S7TeleOpAlimentacao]mTelRecuar_Cilindro bool RW

S7:[S7TeleOpAlimentacao]Modo_Remoto bool RW

S7:[S7TeleOpAlimentacao]mSetup_Ok bool RW

S7:[S7TeleOpAlimentacao]mNotPedido_Peça_Atendido bool RW

S7:[S7TeleOpAlimentacao]mRespNotPedido_Peça_Aten bool RW

Tabela 6 - Mapeamento OPC do Subsistema de Inspeção

Nome do item Tipo Acesso

S7:[S7Inspecao]mCor_Pedido uint16 RW

S7:[S7Inspecao]mInformaChegadaCarroTran bool RW

S7:[S7Inspecao]mPedidoInspecao bool RW

S7:[S7Inspecao]mResNotPedidoAtendido bool RW

S7:[S7Inspecao]mCor_Peca_Inspecionado 1 uint16 RW

S7:[S7Inspecao]mNotPedidoAtendido bool RW

S7:[S7Inspecao]mSetup_Ok bool RW

91

:[S7Inspecao]mCor_Peca_Inspecionado_Prata uint16 RW

S7:[S7Inspecao]mCor_Peca_Inspecionado_Preta uint16 RW

S7:[S7Inspecao]mCor_Peca_Inspecionado_Rosa uint16 RW

S7:[S7Inspecao]mCor_Pedido_Prata uint16 RW

S7:[S7Inspecao]mCor_Pedido_Preta uint16 RW

S7:[S7Inspecao]mCor_Pedido_Rosa uint16 RW

S7:[S7Inspecao]mReqcarroparatransporte bool RW

S7:[S7Inspecao]mPecaAceita bool RW

S7:[S7Inspecao]mPecaRejeitada bool RW

S7:[S7Inspecao]mInfInspecaopeca bool RW

S7:[S7Inspecao]mModo_Remoto bool RW

S7:[S7Inspecao]mReqBaixarPlataforma bool RW

S7:[S7Inspecao]mReqcarroParaTransporte bool RW

S7:[S7Inspecao]mReqEstCilAlturaPeca bool RW

S7:[S7Inspecao]mReqEstCilEnvioPeca bool RW

S7:[S7Inspecao]mReqInspecaoPeca bool RW

S7:[S7Inspecao]mReqRecCilAlturaPeca bool RW

S7:[S7Inspecao]mReqSubirPlataforma bool RW

S7:[S7Inspecao]mReset bool RW

S7:[S7Inspecao]mTelBaixaPlataforma bool RW

S7:[S7Inspecao]mTelEstCilAlturaPeca bool RW

S7:[S7Inspecao]mTelEstCilEnvioPeca bool RW

S7:[S7Inspecao]mTelInspecaoPeca bool RW

S7:[S7Inspecao]mTelRecCilAlturaPeca bool RW

S7:[S7Inspecao]mTelSubirPlataforma bool RW

S7:[S7Inspecao]mReqRecCilEnvioPeca bool RW

S7:[S7Inspecao]mTelRecCilEnvioPeca bool RW

S7:[S7Inspecao]mResNotPedidoAtendido2 bool RW

Tabela 7 - Mapeamento OPC do Subsistema de Montagem

Nome do item Tipo Acesso

S7:[S7Montagem]mReq_Pegar_Peca bool RW

S7:[S7Montagem]mReq_Mon_Peca bool RW

S7:[S7Montagem]MReq_Pegar_Pino bool RW

S7:[S7Montagem]MReq_Mon_Pino bool RW

S7:[S7Montagem]MReq_Pegar_Mola bool RW

S7:[S7Montagem]MReq_Mon_Mola bool RW

S7:[S7Montagem]MReq_Pegar_Tampa bool RW

92

S7:[S7Montagem]MReq_Mon_Tampa bool RW

S7:[S7Montagem]MReq_Trans_Prod bool RW

S7:[S7Montagem]mReq_Carro_Peca bool RW

S7:[S7Montagem]mReq_Carro_Prod bool RW

S7:[S7Montagem]mInfPed_Atendido bool RW

S7:[S7Montagem]Cor_Produco_carro_Rosa bool RW

S7:[S7Montagem]Cor_Produco_carro_Prata bool RW

S7:[S7Montagem]Cor_Produco_carro_Preta bool RW

S7:[S7Montagem]mSetup_Ok bool RW

S7:[S7Montagem]mTel_Pegar_Peca bool RW

S7:[S7Montagem]mTel_Mon_Peca bool RW

S7:[S7Montagem]MTel_Pegar_Pino bool RW

S7:[S7Montagem]MTel_Mon_Pino bool RW

S7:[S7Montagem]MTel_Pegar_Mola bool RW

S7:[S7Montagem]MTel_Mon_Mola bool RW

S7:[S7Montagem]MTel_Pegar_Tampa bool RW

S7:[S7Montagem]MTel_Mon_Tampa bool RW

S7:[S7Montagem]MTel_Trans_Prod bool RW

S7:[S7Montagem]mTele_Operacao bool RW

S7:[S7Montagem]mReset bool RW

S7:[S7Montagem]Inicio_Montagem bool RW

S7:[S7Montagem]mPedido_Montagem bool RW

S7:[S7Montagem]mChegada_Carro_Peca bool RW

S7:[S7Montagem]mChegada_Carro_Produto bool RW

S7:[S7Montagem]MNot_Res_Ped_Atendido bool RW

S7:[S7Montagem]Cor_Peca_carro uint16 RW

S7:[S7Montagem]Cor_Peca_carro_Prata uint16 RW

S7:[S7Montagem]Cor_Peca_carro_Preta uint16 RW

S7:[S7Montagem]Cor_Peca_carro_Rosa uint16 RW

S7:[S7Montagem]mMonitoracao bool RW

S7:[S7Montagem]mChegada_Carro_Produto_2 bool RW

93

APÊNDICE C – Integração: Web Site do Cliente

O Web Site do Cliente foi desenvolvido em linguagem C#, no Microsoft Visual Studio

2010, com .NET Framework 2.0. As Web References criadas foram:

WSCliente http://(IP)/WSCliente/WSCliente/WebService.asmx

WSPedido http://(IP)/WSPedido/Service1.asmx

O código do Web Site do Cliente utiliza-se das Web References acima. A seguir, os

códigos completos:

Default.aspx.cs

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Services;

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void ButtonEntrar_Click(object sender, EventArgs e)
 {
 //Pega valor da caixa de texto
 string login = TextBoxLogin.Text;
 string senha = TextBoxSenha.Text;
 //Cria parametro "CallWebService" da classe WSCliente
 WSCliente.WebService CallWebService = new WSCliente.WebService();
 int id = CallWebService.autenticar(login, senha);
 // está cadastrado
 if (id!=0)
 {
 Response.Redirect("PaginaDoCliente.aspx");
 }
 else { Label1.Text = "Cliente não encontrado. Tente novamente ou realize seu cadastro."; }
 }
 protected void LinkButton_Click(object sender, EventArgs e)
 {
 Response.Redirect("Novocadastro.aspx");
 }
}

NovoCadastro.aspx.cs

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Services;
public partial class NovoCadastro : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }

94

 protected void Button_Click(object sender, EventArgs e)
 {
 //Pega valor da caixa de texto
 string login = TextBoxLogin.Text;
 string senha = TextBoxSenha.Text;
 //Cria parametro "CallWebService" da classe WSCliente
 WSCliente.WebService CallWebService = new WSCliente.WebService();
 CallWebService.incluir(login, senha);
 int id = CallWebService.autenticar(login, senha);
 Label1.Text = "Por favor, anote seu número de cadastro: " + Convert.ToString(id);
 }
 protected void ButtonVoltar_Click(object sender, EventArgs e)
 {
 Response.Redirect("Default.aspx");
 }
}

PaginaDoCliente.aspx.cs

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Services;
public partial class PaginaDoCliente : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 Response.Redirect("NovoPedido.aspx");
 }
 protected void Button2_Click(object sender, EventArgs e)
 {
 Response.Redirect("ConsultarPedido.aspx");
 }

 protected void LinkButton1_Click(object sender, EventArgs e)
 {
 Response.Redirect("Default.aspx");
 }
}

NovoPedido.aspx.cs

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Services;
public partial class NovoPedido : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void ButtonInserir_Click(object sender, EventArgs e)
 {
 int rosas = Convert.ToInt16(TextBoxRosa.Text);
 int pretas = Convert.ToInt16(TextBoxPreta.Text);
 int pratas = Convert.ToInt16(TextBoxPrata.Text);
 int soma = rosas + pretas + pratas;
 if (soma == 0)
 {
 Label2.Text = "Pedido sem produtos.";
 }
 else
 {
 if (soma > 3)
 Label2.Text = "Pedido inválido, pois possui mais de 3 produtos.";
 else

95

 {
 //Pega valor da caixa de texto
 string idcliente2 = TextBox3.Text;
 string rosaspedido2 = TextBoxRosa.Text;
 string pretaspedido2 = TextBoxPreta.Text;
 string prataspedido2 = TextBoxPrata.Text;
 //Cria parametro "CallWebService" da classe WSCliente
 WSPedido.Service1 CallWebService = new WSPedido.Service1();
 CallWebService.incluir(idcliente2, rosaspedido2, pretaspedido2, prataspedido2);
 int id = CallWebService.autenticar(idcliente2, rosaspedido2, pretaspedido2,
prataspedido2);

 Label2.Text = "Por favor, anote o número do seu pedido: " + Convert.ToString(id);
 }
 }
 }
 protected void ButtonVoltar_Click(object sender, EventArgs e)
 {
 Response.Redirect("PaginaDoCliente.aspx");
 }
}

ConsultarPedido.aspx.cs

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Services;
public partial class ConsultarPedido : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void Button1_Click1(object sender, EventArgs e)
 {
 //Pega valor da caixa de texto
 string id2 = TextBox1.Text;
 int id = Convert.ToInt16(id2);
 //Cria parametro "CallWebService" da classe WSCliente
 WSPedido.Service1 CallWebService = new WSPedido.Service1();
 int idcliente = CallWebService.obterIdCliente(id);
 int rosaspedido = CallWebService.obterRosasPedido(id);
 int pretapedido = CallWebService.obterPretasPedido(id);
 int pratapedido = CallWebService.obterPratasPedido(id);
 object status = CallWebService.obterStatus(id);
 int rosaspendentes = CallWebService.obterRosasPendentes(id);
 int pretaspendentes = CallWebService.obterPretasPendentes(id);
 int prataspendentes = CallWebService.obterPratasPendentes(id);
 LabelPedidoRosa.Text = Convert.ToString(rosaspedido);
 LabelPedidoPreta.Text = Convert.ToString(pretapedido);
 LabelPedidoPrata.Text = Convert.ToString(pratapedido);
 LabelProntoRosa.Text = Convert.ToString(rosaspendentes);
 LabelProntoPreta.Text = Convert.ToString(pretaspendentes);
 LabelProntoPrata.Text = Convert.ToString(prataspendentes);
 LabelStatus.Text = "STATUS DO PEDIDO: "+ Convert.ToString(status);
 Label7.Text = "";
 if (idcliente == 0)
 {
 Label7.Text = "Pedido não encontrado, tente novamente.";
 }
 }
 protected void Button2_Click(object sender, EventArgs e)
 {
 Response.Redirect("PaginaDoCliente.aspx");
 }
}

96

APÊNDICE D – Integração: Web Service do Pedido

O Web Service do Pedido foi desenvolvido em linguagem C#, no Microsoft Visual

Studio 2010, com .NET Framework 2.0. O Banco de Dados (BDPedido) foi criado no

Microsoft Office Access 2003 e possui as seguintes informações:

id

idcliente

rosaspedido

pretaspedido

prataspedido

status

rosaspendentes

pretaspendentes

prataspendentes

O código do Web Service do Pedido utiliza-se do Banco de Dados acima. A seguir, o

código completo:

Service1.asmx.cs

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.Services;
using System.Text;
using System.Data;
using System.Data.OleDb;

namespace WSPedido
{
 /// <summary>
 /// Summary description for Service1
 /// </summary>
 [WebService(Namespace = "http://tempuri.org/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]

 public class Service1 : System.Web.Services.WebService
 {
 [WebMethod]
 //Método de inclusão do pedido
 public void incluir(string idcliente2, string rosaspedido2, string pretaspedido2, string
prataspedido2)
 {
 int idcliente = Convert.ToInt16(idcliente2);
 int rosaspedido = Convert.ToInt16(rosaspedido2);
 int pretaspedido = Convert.ToInt16(pretaspedido2);
 int prataspedido = Convert.ToInt16(prataspedido2);

 // Inicia Pedido com todas as peças pendentes.

97

 string status = "pendente";
 int rosaspendentes = rosaspedido;
 int pretaspendentes = pretaspedido;
 int prataspendentes = prataspedido;
 //int rosasparcial = rosaspedido;
 //int pretasparcial = pretaspedido;
 //int pratasparcial = prataspedido;

 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string sql = "INSERT INTO Pedidos(idcliente, rosaspedido, pretaspedido, prataspedido,
status, rosaspendentes, pretaspendentes, prataspendentes) VALUES (@idcliente, @rosaspedido,
@pretaspedido, @prataspedido, @status, @rosaspendentes, @pretaspendentes, @prataspendentes)";

 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);

 OleDbParameter[] param = new OleDbParameter[8];
 param[0] = new OleDbParameter("@idcliente", idcliente);
 param[1] = new OleDbParameter("@rosaspedido", rosaspedido);
 param[2] = new OleDbParameter("@pretaspedido", pretaspedido);
 param[3] = new OleDbParameter("@prataspedido", prataspedido);
 param[4] = new OleDbParameter("@status", status);
 param[5] = new OleDbParameter("@rosaspendentes", rosaspendentes);
 param[6] = new OleDbParameter("@pretaspendentes", pretaspendentes);
 param[7] = new OleDbParameter("@prataspendentes", prataspendentes);
 //param[8] = new OleDbParameter("@rosasparcial", rosasparcial);
 //param[9] = new OleDbParameter("@pretasparcial", pretasparcial);
 //param[10] = new OleDbParameter("@pratasparcial", pratasparcial);

 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param[0]);
 cmd.Parameters.Add(param[1]);
 cmd.Parameters.Add(param[2]);
 cmd.Parameters.Add(param[3]);
 cmd.Parameters.Add(param[4]);
 cmd.Parameters.Add(param[5]);
 cmd.Parameters.Add(param[6]);
 cmd.Parameters.Add(param[7]);
 //cmd.Parameters.Add(param[8]);
 //cmd.Parameters.Add(param[9]);
 //cmd.Parameters.Add(param[10]);

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = sql.ToString();
 cmd.ExecuteNonQuery();
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 //Este método obtem o id do pedido recem inserido
 public int autenticar(string idcliente2, string rosaspedido2, string pretaspedido2, string
prataspedido2)

98

 {
 //TextBox libera um valor do tipo String
 //Estes valores devem ser convertidos pois estão como int no DB
 int idcliente = Convert.ToInt16(idcliente2);
 int rosaspedido = Convert.ToInt16(rosaspedido2);
 int pretaspedido = Convert.ToInt16(pretaspedido2);
 int prataspedido = Convert.ToInt16(prataspedido2);
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";
 //definição do comando sql
 string strSql = "SELECT MAX(id) FROM Pedidos WHERE idcliente = @idcliente AND rosaspedido =
@rosaspedido AND pretaspedido = @pretaspedido AND prataspedido = @prataspedido;";

 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter[] param = new OleDbParameter[4];
 param[0] = new OleDbParameter("@idcliente", idcliente);
 param[1] = new OleDbParameter("@rosaspedido", rosaspedido);
 param[2] = new OleDbParameter("@pretaspedido", pretaspedido);
 param[3] = new OleDbParameter("@prataspedido", prataspedido);

 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param[0]);
 cmd.Parameters.Add(param[1]);
 cmd.Parameters.Add(param[2]);
 cmd.Parameters.Add(param[3]);

 int id = 0;

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 id = Convert.ToInt16(cmd.ExecuteScalar());
 return id;
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 cmd.Dispose();
 conn.Close();
 conn.Dispose();
 }
 }

 [WebMethod]
 public DataSet obter(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string strSql = "SELECT * from Pedidos WHERE id = @id";

 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);

 OleDbParameter param = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);

 try
 {

99

 conn.Open();
 cmd.Connection = conn;
 cmd.CommandText = strSql.ToString();
 cmd.CommandType = CommandType.Text;

 OleDbDataAdapter da = new OleDbDataAdapter(cmd);
 DataSet ds = new DataSet();
 da.Fill(ds);
 return ds;
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public int obterIdCliente(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";
 //definição do comando sql
 string strSql = "SELECT idcliente from Pedidos WHERE id = @id";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter param = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);

 int idcliente = 0;

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 idcliente = Convert.ToInt16(cmd.ExecuteScalar());
 return idcliente;
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public int obterRosasPedido(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

100

 //definição do comando sql
 string strSql = "SELECT rosaspedido from Pedidos WHERE id = @id";

 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);

 OleDbParameter param = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);

 int rosaspedido = 0;

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 rosaspedido = Convert.ToInt16(cmd.ExecuteScalar());

 return rosaspedido;

 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public int obterPretasPedido(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string strSql = "SELECT pretaspedido from Pedidos WHERE id = @id";

 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);

 OleDbParameter param = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);

 int pretaspedido = 0;

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 pretaspedido = Convert.ToInt16(cmd.ExecuteScalar());

 return pretaspedido;

 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)

101

 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public int obterPratasPedido(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string strSql = "SELECT prataspedido from Pedidos WHERE id = @id";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter param = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);
 int prataspedido = 0;

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 prataspedido = Convert.ToInt16(cmd.ExecuteScalar());

 return prataspedido;

 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public Object obterStatus(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string strSql = "SELECT status from Pedidos WHERE id = @id";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter param = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);

 object status = "";

 try
 {
 conn.Open();

102

 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 status = cmd.ExecuteScalar();
 return status;

 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public int obterRosasPendentes(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string strSql = "SELECT rosaspendentes from Pedidos WHERE id = @id";

 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);

 OleDbParameter param = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);

 int rosaspendentes = 0;

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 rosaspendentes = Convert.ToInt16(cmd.ExecuteScalar());

 return rosaspendentes;

 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public int obterPretasPendentes(int id)
 {
 //define conexao

103

 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";
 //definição do comando sql
 string strSql = "SELECT pretaspendentes from Pedidos WHERE id = @id";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);

 OleDbParameter param = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);

 int pretaspendentes = 0;

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 pretaspendentes = Convert.ToInt16(cmd.ExecuteScalar());
 return pretaspendentes;

 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public int obterPratasPendentes(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string strSql = "SELECT prataspendentes from Pedidos WHERE id = @id";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter param = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);
 int prataspendentes = 0;

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 prataspendentes = Convert.ToInt16(cmd.ExecuteScalar());

 return prataspendentes;

 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }

104

 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public void atualizarStatusExe(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string sql = "UPDATE Pedidos SET status = 'executando' WHERE id = @id;";

 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter[] param = new OleDbParameter[1];
 param[0] = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param[0]);

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = sql.ToString();
 cmd.ExecuteNonQuery();
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public void atualizarStatusCon(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";
 //definição do comando sql
 string sql = "UPDATE Pedidos SET status = 'concluido' WHERE id = @id;";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter[] param = new OleDbParameter[1];
 param[0] = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param[0]);

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = sql.ToString();
 cmd.ExecuteNonQuery();
 }
 catch (OleDbException ex)

105

 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public void atualizar_rosaspendentes(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string sql = "UPDATE Pedidos SET rosaspendentes = rosaspendentes-1 WHERE id = @id;";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter[] param = new OleDbParameter[1];
 param[0] = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param[0]);

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = sql.ToString();
 cmd.ExecuteNonQuery();
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }

 }

 [WebMethod]
 public void atualizar_pretaspendentes(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";
 //definição do comando sql
 string sql = "UPDATE Pedidos SET pretaspendentes = pretaspendentes-1 WHERE id = @id;";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter[] param = new OleDbParameter[1];
 param[0] = new OleDbParameter("@id", id);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param[0]);

 try
 {

106

 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = sql.ToString();
 cmd.ExecuteNonQuery();
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public void atualizar_prataspendentes(int id)
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSPedido/BDPedido.mdb";

 //definição do comando sql
 string sql = "UPDATE Pedidos SET prataspendentes = prataspendentes-1 WHERE id = @id;";

 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);

 OleDbParameter[] param = new OleDbParameter[1];
 param[0] = new OleDbParameter("@id", id);

 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param[0]);

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = sql.ToString();
 cmd.ExecuteNonQuery();
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 }
}

107

APÊNDICE E – Integração: Aplicação Windows

O Observador de Pedido (Aplicação Windows) foi desenvolvido em linguagem C#, no

Microsoft Visual Studio 2010, com .NET Framework 4.0. As Web References criadas foram:

WSCoord http://(IP)/WSCoord/Service1.asmx

WSPedido http://(IP)/WSPedido/Service1.asmx

O código da Aplicação Windows utiliza-se das Web References acima. A seguir, o

código completo:

Service1.asmx.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Threading;

namespace Aplicacao
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {

 int IDPedido = 19;
 int i=1;

 //loop infinito
 while (i != 0){

 //verificar se pedido existe
 WSPedido.Service1 CallWebService = new WSPedido.Service1();
 int rosaspedido = CallWebService.obterRosasPedido(IDPedido);
 int pretaspedido = CallWebService.obterPretasPedido(IDPedido);
 int prataspedido = CallWebService.obterPratasPedido(IDPedido);
 int somapedido = rosaspedido + pretaspedido + prataspedido;

 int rosas_pend;
 int pretas_pend;
 int pratas_pend;
 int soma_pend;

 //pedido existe
 if (somapedido > 0)
 {
 rosas_pend = CallWebService.obterRosasPendentes(IDPedido);
 pretas_pend = CallWebService.obterPretasPendentes(IDPedido);

108

 pratas_pend = CallWebService.obterPratasPendentes(IDPedido);

 soma_pend = rosas_pend + pretas_pend + pratas_pend;

 //tem que chamar alimentacao
 while (soma_pend > 0)
 {
 WSCoord.Service1 CallWS = new WSCoord.Service1();
 int disp = CallWS.obter_disponibilidade();

 //está disponivel e alimenta
 if (disp == 1)
 CallWS.Chama_Alimentacao_Peca();

 Thread.Sleep(5 * 1000);

 //Reseta disponibilidade
 CallWS.atualizar_disponibilidade_0();

 // Checa se há mais peças pendentes.
 rosas_pend = CallWebService.obterRosasPendentes(IDPedido);
 pretas_pend = CallWebService.obterPretasPendentes(IDPedido);
 pratas_pend = CallWebService.obterPratasPendentes(IDPedido);
 soma_pend = rosas_pend + pretas_pend + pratas_pend;
 }

 IDPedido = IDPedido + 1;
 }

 }

 }
 }
}

109

APÊNDICE F – Integração: Web Service do Coordenador

O Web Service do Coordenador foi desenvolvido em linguagem C#, no Microsoft

Visual Studio 2010, com .NET Framework 2.0. As Web References criadas foram:

WSCoord http://(IP)/WSPedido/Service1.asmx

WSAlimentacao http://(IP)/WSAlimentacao/Service1.asmx

WSInspecao http://(IP)/WSInspeciona/Service1.asmx

WSTranporte http://\(IP)/WSTransporta/Service1.asmx

WSMontagem http://(IP)/WSMontagem/Service1.asmx

O código do Web Service do Coordenador utiliza-se das Web References acima. A

seguir, o código completo:

Service1.asmx.cs

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.Services;
using System.Data;
using System.Data.OleDb;
using System.Threading;

namespace WSCoordenador
{
 /// <summary>
 /// Summary description for Service1
 /// </summary>
 [WebService(Namespace = "http://tempuri.org/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]
 public class Service1 : System.Web.Services.WebService
 {

 [WebMethod]
 public void Resposta_Alimentacao()
 {
 WSInspecao.Service1 CallWebService = new WSInspecao.Service1();
 int cor = CallWebService.Pedido_Inspecao();

 WSPedido.Service1 CallWSPedido = new WSPedido.Service1();
 int IDPedido = 19;
 int rosaspend = CallWSPedido.obterRosasPendentes(IDPedido);
 int pretaspend = CallWSPedido.obterPretasPendentes(IDPedido);
 int prataspend = CallWSPedido.obterPratasPendentes(IDPedido);
 int somapend = rosaspend + pretaspend + prataspend;

 while (somapend == 0)
 {
 IDPedido = IDPedido + 1;

 rosaspend = CallWSPedido.obterRosasPendentes(IDPedido);
 pretaspend = CallWSPedido.obterPretasPendentes(IDPedido);
 prataspend = CallWSPedido.obterPratasPendentes(IDPedido);

110

 somapend = rosaspend + pretaspend + prataspend;
 }

 if (cor == 1 && rosaspend > 0)
 {
 CallWebService.Envio_Peca();

 WSTransporte.Service1 CallWSTransporte = new WSTransporte.Service1();
 CallWSTransporte.Informa_Rosa();
 Thread.Sleep(2 * 1000);
 CallWSTransporte.Inspecao_solicita_carro();

 //informa cor para a montagem tb
 WSMontagem.Service1 CallWSMontagem = new WSMontagem.Service1();
 CallWSMontagem.Montar_rosa();

 //decrementa rosas pendentes
 CallWSPedido.atualizar_rosaspendentes(IDPedido);
 }

 else if (cor == 2 && pretaspend > 0)
 {
 CallWebService.Envio_Peca();

 WSTransporte.Service1 CallWSTransporte = new WSTransporte.Service1();
 CallWSTransporte.Informa_Preta();
 CallWSTransporte.Inspecao_solicita_carro();
 //informa cor para a montagem tb
 WSMontagem.Service1 CallWSMontagem = new WSMontagem.Service1();
 CallWSMontagem.Montar_preta();
 //decrementa pretas pendentes
 CallWSPedido.atualizar_pretaspendentes(IDPedido);
 }

 else if (cor == 3 && prataspend > 0)
 {
 CallWebService.Envio_Peca();

 WSTransporte.Service1 CallWSTransporte = new WSTransporte.Service1();
 CallWSTransporte.Informa_Prata();
 CallWSTransporte.Inspecao_solicita_carro();

 //informa cor para a montagem tb
 WSMontagem.Service1 CallWSMontagem = new WSMontagem.Service1();
 CallWSMontagem.Montar_prata();
 //decrementa pratas pendentes
 CallWSPedido.atualizar_prataspendentes(IDPedido);
 }

 else
 {
 CallWebService.Rejeita_Peca();
 }

 }

 [WebMethod]
 public void Resposta_Telecomando_de_inspecao()
 {
 WSInspecao.Service1 CallWebService = new WSInspecao.Service1();
 int cor = CallWebService.Verificar_cor_inspecionada();
 WSPedido.Service1 CallWSPedido = new WSPedido.Service1();
 int IDPedido = 19;

 int rosaspend = CallWSPedido.obterRosasPendentes(IDPedido);
 int pretaspend = CallWSPedido.obterPretasPendentes(IDPedido);
 int prataspend = CallWSPedido.obterPratasPendentes(IDPedido);
 int somapend = rosaspend + pretaspend + prataspend;

 while (somapend == 0)
 {
 IDPedido = IDPedido + 1;

 rosaspend = CallWSPedido.obterRosasPendentes(IDPedido);

111

 pretaspend = CallWSPedido.obterPretasPendentes(IDPedido);
 prataspend = CallWSPedido.obterPratasPendentes(IDPedido);
 somapend = rosaspend + pretaspend + prataspend;
 }

 if (cor == 1 && rosaspend > 0)
 {
 CallWebService.Envio_Peca();

 WSTransporte.Service1 CallWSTransporte = new WSTransporte.Service1();
 CallWSTransporte.Informa_Rosa();
 Thread.Sleep(2 * 1000);
 CallWSTransporte.Inspecao_solicita_carro();

 //informa cor para a montagem tb
 WSMontagem.Service1 CallWSMontagem = new WSMontagem.Service1();
 CallWSMontagem.Montar_rosa();

 //decrementa rosas pendentes
 CallWSPedido.atualizar_rosaspendentes(IDPedido);
 }

 else if (cor == 2 && pretaspend > 0)
 {
 CallWebService.Envio_Peca();

 WSTransporte.Service1 CallWSTransporte = new WSTransporte.Service1();
 CallWSTransporte.Informa_Preta();
 CallWSTransporte.Inspecao_solicita_carro();
 //informa cor para a montagem tb
 WSMontagem.Service1 CallWSMontagem = new WSMontagem.Service1();
 CallWSMontagem.Montar_preta();
 //decrementa pretas pendentes
 CallWSPedido.atualizar_pretaspendentes(IDPedido);
 }

 else if (cor == 3 && prataspend > 0)
 {
 CallWebService.Envio_Peca();

 WSTransporte.Service1 CallWSTransporte = new WSTransporte.Service1();
 CallWSTransporte.Informa_Prata();
 CallWSTransporte.Inspecao_solicita_carro();
 //informa cor para a montagem tb
 WSMontagem.Service1 CallWSMontagem = new WSMontagem.Service1();
 CallWSMontagem.Montar_prata();
 //decrementa pratas pendentes
 CallWSPedido.atualizar_prataspendentes(IDPedido);
 }

 else
 {
 CallWebService.Rejeita_Peca();
 }

 }

 [WebMethod]
 public void Resposta_Carrinho()
 {
 WSInspecao.Service1 CallWebService = new WSInspecao.Service1();
 CallWebService.Expulsar_peca_para_carro();
 }

 [WebMethod]
 public void Resposta_Inspecao()
 {
 WSTransporte.Service1 CallWSTransporte = new WSTransporte.Service1();
 CallWSTransporte.Montagem_solicita_carro_para_montagem();
 }

 [WebMethod]
 public void atualizar_disponibilidade_0()
 {

112

 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSCoord/DBdisp.mdb";
 //definição do comando sql
 string sql = "UPDATE Disponibilidade SET disponibilidade = 0 WHERE id = @id;";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter[] param = new OleDbParameter[1];
 param[0] = new OleDbParameter("@id", 22);

 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param[0]);

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = sql.ToString();
 cmd.ExecuteNonQuery();
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 [WebMethod]
 public void atualizar_disponibilidade_1()
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSCoord/DBdisp.mdb";

 //definição do comando sql
 string sql = "UPDATE Disponibilidade SET disponibilidade = 1 WHERE id = @id;";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter[] param = new OleDbParameter[1];
 param[0] = new OleDbParameter("@id", 22);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param[0]);

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = sql.ToString();
 cmd.ExecuteNonQuery();
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();

113

 }
 }

 [WebMethod]
 public int obter_disponibilidade()
 {
 //define conexao
 string strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:/Inetpub/wwwroot/WSCoord/DBdisp.mdb";
 //definição do comando sql
 string strSql = "SELECT disponibilidade from Disponibilidade WHERE id = @id";
 //cria a conexao com o banco de dados
 OleDbConnection conn = new OleDbConnection(strConnection);
 OleDbParameter param = new OleDbParameter("@id", 22);
 OleDbCommand cmd = new OleDbCommand();
 cmd.Parameters.Add(param);

 int idcliente = 0;

 try
 {
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;
 cmd.CommandText = strSql.ToString();
 idcliente = Convert.ToInt16(cmd.ExecuteScalar());
 return idcliente;
 }
 catch (OleDbException ex)
 {
 throw new Exception("ERRO BANCO DE DADOS: " + ex.Message.ToString());
 }
 catch (Exception ex)
 {
 throw new Exception("ERRO RUNTIME: " + ex.Message.ToString());
 }
 finally
 {
 conn.Close();
 conn.Dispose();
 cmd.Dispose();
 }
 }

 // Chama alimentação a partir do coordenador
 [WebMethod]
 public void Chama_Alimentacao_Peca ()
 {
 WSAlimentacao.Service1 CallWebService = new WSAlimentacao.Service1();
 CallWebService.Pedido_Peca();
 }

 [WebMethod]
 public void Resposta_Carrinho_inicio_montagem()
 {
 WSMontagem.Service1 CallWebService = new WSMontagem.Service1();
 CallWebService.Pegar_Peca();
 }

 [WebMethod]
 public void Requisita_Carrinho_fim_montagem()
 {
 WSTransporte.Service1 CallWebService = new WSTransporte.Service1();
 CallWebService.Montagem_solicita_carro_para_produto();
 }
 }
}

114

APÊNDICE G– Subsistema de transporte: Web Service

O Web Service do subsistema de transporte foi desenvolvido em linguagem C#, no

Microsoft Visual Studio 2010, com .NET Framework 2.0. A Web Reference criada foi:

WSCoordenador http://(IP)/WSCoord/Service1.asmx

O código do Web Service utiliza-se da Web Reference acima. A seguir, o código

completo:

TranspTeleOpWS.cs

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.Services;
using System.Xml;
using System.Threading;
using opcconn;

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class TranspTeleOpWS : System.Web.Services.WebService {
 private int mySleep = 1000;

 public TranspTeleOpWS () {
 //Uncomment the following line if using designed components
 //InitializeComponent();
 }

 [WebMethod]
 public string Conecta() {
 string retorno = "OK";
 XmlDocument xmlDoc = new XmlDocument();
 XmlDocument xmlDocTela = new XmlDocument();
 opcClient opc;

 if (Application["opcClient"] == null) {
 try {
 // Trava o application para apenas apenas uma aplicação alocar o objeto
 Application.Lock();

 // Le o arquivo com os parâmetros para configurar o objeto OPC
 xmlDoc.Load(HttpContext.Current.Request.PhysicalApplicationPath +
"./xml/opcconfig.xml");
 XmlNode xmlServer = xmlDoc.GetElementsByTagName("server")[0];

 // Cria o objeto OPC
 opc = new opcClient(xmlServer.Attributes.GetNamedItem("name").Value);

 if (opc.ErrorMessage.Length > 0) {
 opc.Dispose();
 // Não foi possível criar o objeto OPC
 retorno = "NOK";
 }
 else {
 // Cria o grupo
 foreach (XmlNode xmlGroup in xmlServer.SelectNodes("group")) {

115

 opc.AddGroup(xmlGroup.Attributes.GetNamedItem("name").Value);
 if (opc.ErrorMessage.Length == 0) {
 // Cria os itens dentro do grupo
 foreach (XmlNode xmlItem in xmlGroup.SelectNodes("item")) {

opc.GetGroupByPosition(0).AddItem(xmlItem.Attributes.GetNamedItem("id").Value,
xmlItem.Attributes.GetNamedItem("memory").Value);
 if (opc.GetGroupByPosition(0).ErrorMessage.Length > 0) {
 // Não foi possível criar ao menos um item
 retorno = "NOK";
 break;
 }
 }
 }
 else {
 // Não foi possível criar o grupo
 retorno = "NOK";
 }
 }
 }
 if (retorno != "NOK") {
 // Guarda o objeto OPC no application para que seja a única instância
 Application["opcClient"] = opc;

 // Limpa o XML para montar a tela
 // - retira atributos que não seja ID de DESC
 // - retira itens cujo atributo ID não comece com W (são apenas de leitura)
 xmlDocTela.LoadXml(xmlDoc.InnerXml);

 XmlNodeList arrayItens = xmlDocTela.GetElementsByTagName("item");
 for (int i = arrayItens.Count - 1; i >= 0; i--) {
 // Se for de escrita, deixo e limpo os demais atributos
 if
(String.Compare(arrayItens[i].Attributes.GetNamedItem("id").Value.Substring(0, 1), "W") == 0) {
 //arrayItens[i].Attributes.RemoveNamedItem("memory");
 arrayItens[i].Attributes.RemoveNamedItem("value");
 }
 // Do contrário, removo o nó inteiro
 else {
 xmlDocTela.GetElementsByTagName("group")[0].RemoveChild(arrayItens[i]);
 }
 }
 Application["xmlDocTela"] = xmlDocTela.InnerXml;

 // Limpa o XML para atualizar variáveis de tela
 arrayItens = xmlDoc.GetElementsByTagName("item");
 for (int i = arrayItens.Count - 1; i >= 0; i--) {
 // Se for de escrita, deixo e limpo os demais atributos
 if
(String.Compare(arrayItens[i].Attributes.GetNamedItem("id").Value.Substring(0, 1), "W") == 0) {
 arrayItens[i].Attributes.RemoveNamedItem("memory");
 arrayItens[i].Attributes.RemoveNamedItem("desc");
 }
 // Do contrário, removo o nó inteiro
 else {
 xmlDoc.GetElementsByTagName("group")[0].RemoveChild(arrayItens[i]);
 }
 }
 Application["xmlDoc"] = xmlDoc.InnerXml;
 }
 }
 catch (Exception e) {
 // Apenas em caso de algum exceção, mas não estou preocupado com qual
 Application["xmlDoc"] = null;
 Application["xmlDocTela"] = null;
 Application["opcClient"] = null;
 retorno = "NOK";
 }
 finally {
 xmlDoc = null;
 xmlDocTela = null;
 // Destrava o application
 Application.UnLock();
 }

116

 }
 if (retorno == "NOK") {
 Application["xmlDoc"] = null;
 Application["xmlDocTela"] = null;
 Application["opcClient"] = null;
 }
 return retorno;
 }

 [WebMethod]
 public XmlDocument MontaComandos() {
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(Application["xmlDocTela"].ToString());
 return xmlDoc;
 }

 [WebMethod]
 public string Desconecta() {
 try {
 Application.Lock();
 opcClient opc = (opcClient)Application["opcClient"];
 opc.Dispose();
 opc = null;
 }
 catch (Exception e) {
 }
 finally {
 Application["opcClient"] = null;
 Application["xmlDocTela"] = null;
 Application["xmlDoc"] = null;
 Application.UnLock();
 }
 return "OK";
 }

 [WebMethod]
 public XmlDocument AtualizaComandos() {
 opcClient opc;
 opcClientGroup group;
 XmlDocument xmlDoc = new XmlDocument();

 bool R000, R001;
 bool W000, W001, W006, W007, W008, W009;
 int W002, W003, W004, W005;

 try {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);
 xmlDoc.LoadXml(Application["xmlDoc"].ToString());

 R000 = (Int32.Parse(group.GetItemById("R000").Read()) == 0) ? false : true;
 R001 = (Int32.Parse(group.GetItemById("R001").Read()) == 0) ? false : true;

 W000 = (Int32.Parse(group.GetItemById("W000").Read()) == 0) ? false : true;
 W001 = (Int32.Parse(group.GetItemById("W001").Read()) == 0) ? false : true;
 W005 = W002 = W003 = W004 = Int32.Parse(group.GetItemById("W005").Read());

 W006 = (Int32.Parse(group.GetItemById("W006").Read()) == 0) ? false : true;
 W007 = (Int32.Parse(group.GetItemById("W007").Read()) == 0) ? false : true;
 W008 = (Int32.Parse(group.GetItemById("W008").Read()) == 0) ? false : true;
 W009 = (Int32.Parse(group.GetItemById("W009").Read()) == 0) ? false : true;

 // Leitura das variáveis - fim

 // Atualiza saída - início

 foreach (XmlNode item in xmlDoc.GetElementsByTagName("item")) {
 if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W000") == 0){
 item.Attributes.GetNamedItem("value").Value = "ok";
 }
 else if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W001") == 0)
 {
 item.Attributes.GetNamedItem("value").Value = (R000) ? "ok" : "nok";

117

 }
 else if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W002") == 0)
 {
 item.Attributes.GetNamedItem("value").Value = "ok";
 }
 else if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W003") == 0)
 {
 item.Attributes.GetNamedItem("value").Value = "ok";
 }
 else if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W004") == 0)
 {
 item.Attributes.GetNamedItem("value").Value = "ok";
 }
 else if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W005") == 0)
 {
 item.Attributes.GetNamedItem("value").Value = "nok";
 }
 else if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W006") == 0)
 {
 item.Attributes.GetNamedItem("value").Value = "ok";
 }
 else if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W007") == 0)
 {
 item.Attributes.GetNamedItem("value").Value = "ok";
 }
 else if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W008") == 0)
 {
 item.Attributes.GetNamedItem("value").Value = (R001) ? "ok" : "nok";
 }
 else if (String.Compare(item.Attributes.GetNamedItem("id").Value, "W009") == 0)
 {
 item.Attributes.GetNamedItem("value").Value = (R001) ? "ok" : "nok";
 }
 }

 // Atualiza saída - fim
 }
 catch (Exception e) {
 xmlDoc.LoadXml("<root><erro>NOK</erro></root>");
 }
 finally {
 group = null;
 opc = null;
 }
 return xmlDoc;
 }

 [WebMethod]
 public string Req_Inspecao_Est2()
 {
 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try
 {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

 group.GetItemById("W000").Write("1");
 //Thread.Sleep(mySleep);
 //group.GetItemById("W000").Write("0");
 }
 catch (Exception e)
 {
 retorno = "NOK";
 }
 finally
 {
 group = null;
 opc = null;
 }
 return retorno;
 }

118

 [WebMethod]
 public string Saida_autorizada_Est2()
 {
 WSCoordenador.Service1 CallWebService = new WSCoordenador.Service1();
 CallWebService.Resposta_Carrinho();
 Thread.Sleep(7 * 1000);

 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

 group.GetItemById("W001").Write("1");
 Thread.Sleep(mySleep);
 group.GetItemById("W001").Write("0");

 Thread.Sleep(mySleep);
 //libera carro e tira a solicitação de carrinho para a estação 2
 group.GetItemById("W000").Write("0");
 }
 catch (Exception e) {
 retorno = "NOK";
 }
 finally {
 group = null;
 opc = null;
 }

 return retorno;
 }

 [WebMethod]
 public string Cor_pedido_Est2()
 {
 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try
 {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

 group.GetItemById("W005").Write("0");
 //Thread.Sleep(mySleep);
 //group.GetItemById("W019").Write("0");
 }
 catch (Exception e)
 {
 retorno = "NOK";
 }
 finally
 {
 group = null;
 opc = null;
 }
 return retorno;
 }

 [WebMethod]
 public string Cor_pedido_Est2_Rosa()
 {
 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try
 {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

119

 group.GetItemById("W005").Write("1");
 //Thread.Sleep(mySleep);
 //group.GetItemById("W019").Write("0");
 }
 catch (Exception e)
 {
 retorno = "NOK";
 }
 finally
 {
 group = null;
 opc = null;
 }
 return retorno;
 }

 [WebMethod]
 public string Cor_pedido_Est2_Preta()
 {
 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try
 {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

 group.GetItemById("W005").Write("2");
 //Thread.Sleep(mySleep);
 //group.GetItemById("W019").Write("0");
 }
 catch (Exception e)
 {
 retorno = "NOK";
 }
 finally
 {
 group = null;
 opc = null;
 }
 return retorno;
 }

 [WebMethod]
 public string Cor_pedido_Est2_Prata()
 {
 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try
 {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

 group.GetItemById("W005").Write("3");
 //Thread.Sleep(mySleep);
 //group.GetItemById("W019").Write("0");
 }
 catch (Exception e)
 {
 retorno = "NOK";
 }
 finally
 {
 group = null;
 opc = null;
 }
 return retorno;
 }

 [WebMethod]

120

 public string Req_peca_st3()
 {
 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try
 {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

 group.GetItemById("W006").Write("1");
 //Thread.Sleep(mySleep);
 //group.GetItemById("W000").Write("0");
 }
 catch (Exception e)
 {
 retorno = "NOK";
 }
 finally
 {
 group = null;
 opc = null;
 }
 return retorno;
 }

 [WebMethod]
 public string Req_produto_montado_st3()
 {
 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try
 {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

 group.GetItemById("W007").Write("1");
 //Thread.Sleep(mySleep);
 //group.GetItemById("W000").Write("0");
 }
 catch (Exception e)
 {
 retorno = "NOK";
 }
 finally
 {
 group = null;
 opc = null;
 }
 return retorno;
 }

 [WebMethod]
 public string Saida_Autorizada_St3()
 {
 WSCoordenador.Service1 CallWebService = new WSCoordenador.Service1();
 CallWebService.Resposta_Carrinho_inicio_montagem();

 Thread.Sleep(20 * 1000);

 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try
 {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

 //group.GetItemById("W008").Write("1");
 //Thread.Sleep(mySleep);

121

 group.GetItemById("W008").Write("0");

 //libera carro e tira a solicitação de carrinho para a estação 3
 //group.GetItemById("W006").Write("0");
 //group.GetItemById("W007").Write("0");
 }
 catch (Exception e)
 {
 retorno = "NOK";
 }
 finally
 {
 group = null;
 opc = null;
 }
 return retorno;

 }

 [WebMethod]
 public string Saida_Autorizada_St3_2()
 {
 string retorno = "OK";
 opcClient opc;
 opcClientGroup group;

 try
 {
 opc = (opcClient)Application["opcClient"];
 group = opc.GetGroupByPosition(0);

 group.GetItemById("W009").Write("1");
 Thread.Sleep(mySleep);
 group.GetItemById("W009").Write("0");

 //libera carro e tira a solicitação de carrinho para a estação 3
 group.GetItemById("W006").Write("0");
 group.GetItemById("W007").Write("0");
 }
 catch (Exception e)
 {
 retorno = "NOK";
 }
 finally
 {
 group = null;
 opc = null;
 }

 WSCoordenador.Service1 CallWebService = new WSCoordenador.Service1();
 CallWebService.atualizar_disponibilidade_1();

 return retorno;
 }

}

122

ANEXO A – Subsistema de transporte: Web Site do Tel eoperador

O código a seguir foi desenvolvido em linguagem C# no Visual Studio. Este código

utiliza-se da Web Service criada para o subsistema de transporte (Apêndice G).

estacao.js

// Variáveis Globais - início --
var url = "../TranspTeleOpWS/TranspTeleOpWS.asmx/";
// Variáveis Globais - fim ---

jframework.io.js

_classes.registerClass("jfAjax", "xbObject");
function jfAjax () {
 _classes.defineClass("jfAjax", _prototype_func);
 this.init();
 function _prototype_func() {
 jfAjax.prototype.init = init;
 function init() {
 this.parentMethod("init");
 this._xmlHttp = null;
 this._errorCode = null;
 this._return = null;
 // Parâmetros de entrada
 this.url = "";
 this.postData = "";
 this.returnFunction = null;
 try {
 // Firefox, Opera 8.0+, Safari, IE7
 this._xmlHttp = new XMLHttpRequest();
 if (this._xmlHttp.overrideMimeType) {
 this._xmlHttp.overrideMimeType("text/html");
 }
 }
 catch (e) {
 // Internet Explorer
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0", "MSXML2.XMLHTTP.5.0",
"MSXML2.XMLHTTP.4.0", "MSXML2.XMLHTTP.3.0", "MSXML2.XMLHTTP", "Microsoft.XMLHTTP");
 for(var i = 0; i < XmlHttpVersions.length && !this._xmlHttp; i++) {
 try {
 this._xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch(e){}
 }
 if (i == XmlHttpVersions.length) {
 this._errorCode = "IO6001";
 }
 }
 };

 jfAjax.prototype.getReturn = getReturn;
 function getReturn() {
 return this._return;
 };

 jfAjax.prototype.getErrorCode = getErrorCode;
 function getErrorCode() {
 return this._errorCode;
 };
 jfAjax.prototype.postSynchronouslyCall = postSynchronouslyCall;
 function postSynchronouslyCall() {
 try {
 this._xmlHttp.open('POST', this.url, false);
 this._xmlHttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 this._xmlHttp.setRequestHeader("Cache-Control", "no-store, no-cache, must-revalidate");

123

 this._xmlHttp.setRequestHeader("Pragma", "no-cache");
 this._xmlHttp.setRequestHeader("Connection", "Keep-Alive");
 this._xmlHttp.setRequestHeader("Content-length", this.postData.length);
 this._xmlHttp.send(this.postData);
 }
 catch(e) {
 this._errorCode = "IO6002";
 }
 if (this._xmlHttp.status == 200) {
 this._return = this._xmlHttp.responseText;
 }
 };
 jfAjax.prototype.postAsynchronouslyCall = postAsynchronouslyCall;
 function postAsynchronouslyCall() {
 try {
 this._xmlHttp.open('POST', this.url, true);
 this._xmlHttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 this._xmlHttp.setRequestHeader("Cache-Control", "no-store, no-cache, must-revalidate");
 this._xmlHttp.setRequestHeader("Pragma", "no-cache");
 this._xmlHttp.setRequestHeader("Content-length", this.postData.length);
 this._xmlHttp.setRequestHeader("Connection", "Keep-Alive");
 this._xmlHttp.onreadystatechange = function() {
 if (this.readyState == 4) {
 if (this.status == 200) {
 this.returnFunction(this.responseText);
 }
 else {
 this.returnFunction(null);
 }
 }
 }
 this._xmlHttp.send(this.postData);
 }
 catch(e) {
 this._errorCode = "IO6002";
 }
 };
 jfAjax.prototype.getSynchronouslyCall = getSynchronouslyCall;
 function getSynchronouslyCall() {
 try {
 this._xmlHttp.open('GET', this.url + "?" + this.postData, false);
 this._xmlHttp.send(null);
 }
 catch(e) {
 this._errorCode = "IO6002";
 }
 if (this._xmlHttp.status == 200) {
 this._return = this._xmlHttp.responseText;
 }
 };
 jfAjax.prototype.getAsynchronouslyCall = getAsynchronouslyCall;
 function getAsynchronouslyCall() {
 try {
 this._xmlHttp.open('GET', this.url + "?" + this.postData, true);
 this._xmlHttp.onreadystatechange = function() {
 if (this.readyState == 4) {
 if (this.status == 200) {
 this.returnFunction(this.responseText);
 }
 else {
 this.returnFunction(null);
 }
 }
 }
 this._xmlHttp.send(null);
 }
 catch(e) {
 this._errorCode = "IO6002";
 }
 };
 };
};

_classes.registerClass("jfLoadXML", "xbObject");

124

function jfLoadXML () {
 _classes.defineClass("jfLoadXML", _prototype_func);
 this.init();
 function _prototype_func() {
 jfLoadXML.prototype.init = init;
 function init() {
 this.parentMethod("init");
 this._xmlDoc = null;
 this._errorCode = null;
 // code for IE
 if (window.ActiveXObject) {
 this._xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 }
 // code for Mozilla, Firefox, Opera, etc.
 else if (document.implementation && document.implementation.createDocument) {
 this._xmlDoc = document.implementation.createDocument("", "", null);
 }
 else {
 this._errorCode = "IO6003";
 }
 };
 jfLoadXML.prototype.getXML = getXML;
 function getXML(xmlDoc) {
 if (this._errorCode == null) {
 this._xmlDoc.async = false;
 try {
 this._xmlDoc.load(xmlDoc);
 }
 catch(e) {
 this._errorCode = "IO6004";
 }
 return this._xmlDoc;
 }
 };
 jfLoadXML.prototype.getErrorCode = getErrorCode;
 function getErrorCode() {
 return this._errorCode;
 };
 };
};
_classes.registerClass("jfParseXML", "xbObject");
function jfParseXML () {
 _classes.defineClass("jfParseXML", _prototype_func);
 this.init();
 function _prototype_func() {
 jfParseXML.prototype.init = init;
 function init() {
 this.parentMethod("init");
 this._xmlDoc = null;
 this._errorCode = null;
 };
 jfParseXML.prototype.getXML = getXML;
 function getXML(xmlDoc) {
 // code for IE
 if (window.ActiveXObject) {
 this._xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 this._xmlDoc.async = false;
 this._xmlDoc.loadXML(xmlDoc);
 }
 // code for Mozilla, Firefox, Opera, etc.
 else if (document.implementation && document.implementation.createDocument) {
 var parser = new DOMParser();
 this._xmlDoc = parser.parseFromString(xmlDoc,"text/xml");
 parser = null;
 }
 else {
 this._errorCode = "IO6004";
 }
 return this._xmlDoc;
 };

 jfParseXML.prototype.getErrorCode = getErrorCode;
 function getErrorCode() {
 return this._errorCode;

125

 };
 };
};

jframework.menu.js

loadCSS("jframework.menu.css");

_classes.registerClass("jfMenuH", "xbObject");
function jfMenuH (id, parentId) {
 _classes.defineClass("jfMenuH", _prototype_func);
 this.init(id, parentId);

 function _prototype_func() {

 jfMenuH.prototype.init = init;
 function init(id, parentId) {
 this.parentMethod("init");
 this._div = document.createElement("div");
 this._div.style.visibility = "hidden";
 if (id != null) {
 this._div.id = id;
 }
 this._div.className = "jfMenuH";
 this._div.parentId = parentId;
 this._div.cont = 0;
 this._div.menuSelected = null;
 this._menuWidth = 0;
 // Insere o elemento no parent
 if (parentId != null) document.getElementById(parentId).appendChild(this._div);
 };
 jfMenuH.prototype.addMenuItem = addMenuItem;
 function addMenuItem(text, action) {
 var _tagUL = document.createElement("ul");
 var _tagLI = document.createElement("li");
 var _tagA = document.createElement("a");
 _tagA.href = "#";
 _tagA.innerHTML = text;
 _tagLI.className = "jfMenuHItem";
 this._div.menuSelected = _tagLI.id = "mItem" + this._div.cont++;
 _tagLI.onclick = action;
 _tagLI.appendChild(_tagA);
 _tagUL.appendChild(_tagLI);
 this._div.appendChild(_tagUL);
 this._menuWidth += _tagUL.clientWidth + 6;
 };
 jfMenuH.prototype.addSubMenuItem = addSubMenuItem;
 function addSubMenuItem(text, action) {
 var _tagLI = document.getElementById(this._div.menuSelected);
 var _tagUL = _tagLI.getElementsByTagName("ul");
 if (_tagUL.length == 0) {
 _tagUL = document.createElement("ul");
 _tagUL.className = "jfMenuHDD";
 _tagLI.target = _tagUL.id = "mItem" + this._div.cont++;
 _tagLI.onmouseover = function() {
 document.getElementById(this.target).style.visibility = "visible";
 };
 _tagLI.onmouseout = function() {
 document.getElementById(this.target).style.visibility = "hidden";
 };
 _tagLI.getElementsByTagName("a")[0].innerHTML += " ▼";
 _tagLI.appendChild(_tagUL);
 }
 else {
 _tagUL = _tagUL[0];
 }
 _tagLI = document.createElement("li");
 var _tagA = document.createElement("a");
 _tagA.href = "#";
 _tagA.innerHTML = text;
 _tagLI.className = "jfMenuHDDItem";
 _tagLI.id = "mItem" + this._div.cont++;
 _tagLI.onclick = action;
 _tagLI.appendChild(_tagA);

126

 _tagUL.appendChild(_tagLI);
 };
 jfMenuH.prototype.show = show;
 function show() {
 this._div.style.width = this._menuWidth + "px";
 this._div.style.visibility = "visible";
 };
 jfMenuH.prototype.getObj = getObj;
 function getObj() {
 return this._div;
 };
 };
};

jframework.messages.js

// Variáveis globais - início --
var globalErrorMessagesXml = null;
// Variáveis globais - fim ---

// Carrega as mensagens de erro utilizadas na aplicação
function loadMessagesXml() {
 var _loadMessageXml = new loadXML();
 globalErrorMessagesXml = _loadMessageXml.getXML("./xml/messages.xml");
 _loadMessageXml = null;
};
alertFunction = function(codMessage, parameters) {
 if (globalErrorMessagesXml == null) {
 loadMessagesXml();
 }
 var _message = "";
 try {
 _message = globalErrorMessagesXml.getElementsByTagName(codMessage)[0].getAttribute("texto");
 }
 catch(e) {
 _message = "Mensagem " + codMessage + " não cadastrada!";
 }

 if (parameters != "") {
 var arrayParameters = parameters.split("#");
 for (var i = 0; i < arrayParameters.length; i++) {
 _message = _message.replace("{" + i + "}", arrayParameters[i]);
 }
 }
 var _cursor = document.body.style.cursor;
 document.body.style.cursor = "default";
 alert(_message);
 document.body.style.cursor = _cursor;
 _cursor = null;
};
confirmFunction = function(codMessage, parameters) {
 if (globalErrorMessagesXml == null) {
 loadMessagesXml();
 }
 var _message = globalErrorMessagesXml.getElementsByTagName(codMessage)[0].getAttribute("texto");
 if (_message == null) {
 _message = "Mensagem " + codMessage + " não cadastrada!";
 alert(_message);
 return false;
 }
 else {
 if (arrayParameters != "") {
 var arrayParameters = parameters.split("#");
 for (var i = 0; i < arrayParameters.length; i++) {
 _message = _message.replace("{" + i + "}", arrayParameters[i]);
 }
 }
 var _cursor = document.body.style.cursor;
 document.body.style.cursor = "default";
 var _returnOption = confirm(_message);
 document.body.style.cursor = _cursor;
 _cursor = null;
 return _returnOption;
 }

127

};

jframework.util.js

// Função que carrega o CSS específico de uma classe - início --------------------------
loadCSS = function(cssName) {
 if (document.getElementById(cssName) == null) {
 var _css = document.createElement("link");
 _css.type = "text/css";
 _css.rel = "stylesheet";
 _css.href = _css.id = "./css/" + cssName;
 document.getElementsByTagName("head")[0].appendChild(_css);
 _css = null;
 }
};
// Função que carrega o CSS específico de uma classe - fim -----------------------------
// Função que apresenta uma mensagem de debug na tela - início -------------------------
// Esta é apenas uma assinatura que não faz nada
debugFunction = function(message) {
};
// Função que apresenta uma mensagem de debug na tela - fim ----------------------------

jframework.window.js

// Objeto que representa um botão - início ---
_classes.registerClass("jfButtom", "xbObject");
function jfButtom (id, className, text, parentId) {
 _classes.defineClass("jfButtom", _prototype_func);
 this.init(id, className, text, parentId);
 function _prototype_func() {

 jfButtom.prototype.init = init;
 function init(id, className, text, parentId) {
 this.parentMethod("init");
 // Atributos
 this._a = document.createElement("a");
 //this._a.style.visibility = "hidden";
 this._a.style.display = "none";
 this._a.id = id;
 this._a.className = (className != null) ? className : "jfButtom";
 this._a.innerHTML = text;
 this._a.parentId = parentId;
 this._a.href = "#";
 this._a.enabled = true;
 this._a.validate = function () {
 return true;
 };
 this._a.action = function () {
 return true;
 };

 // Eventos
 this._a.onclick = function () {
 if (this.enabled == true) {
 this.enabled = false;

 var _cursor = document.body.style.cursor;
 document.body.style.cursor = "wait";
 if (this.validate()) {
 this.action();
 }
 document.body.style.cursor = _cursor;
 this.enabled = true
 }
 };
 };
 jfButtom.prototype.setValidation = setValidation;
 function setValidation(validationFunction) {
 this._a.validate = validationFunction;
 };
 jfButtom.prototype.setAction = setAction;
 function setAction(actionFunction) {
 this._a.action = actionFunction;
 };

128

 jfButtom.prototype.show = show;
 function show() {
 //this._a.style.visibility = "visible";
 this._a.style.display = "inline";
 };
 jfButtom.prototype.getObj = getObj;
 function getObj() {
 return this._a;
 };
 };
};
// Objeto que representa um botão - fim --
// Objeto que representa uma janela - início ---
_classes.registerClass("jfWindow", "xbObject");
function jfWindow (id, className, parentId) {
 _classes.defineClass("jfWindow", _prototype_func);
 this.init(id, className, parentId);
 function _prototype_func() {
 jfWindow.prototype.init = init;
 function init(id, className, parentId) {
 this.parentMethod("init");
 // Atributos
 this._div = document.createElement("div");
 //this._div.style.visibility = "hidden";
 this._div.style.display = "none";
 this._div.id = id;
 this._div.className = (className != null) ? className : "jfWindow";
 this._div.parentId = parentId;
 // Cria uma região para inserir título
 this._div.tit = null;
 // Cria uma região para inserir conteúdo
 this._div.cont = document.createElement("div");
 this._div.cont.className = this._div.className + "Cont";
 this._div.appendChild(this._div.cont);
 // Cria uma região para inserir botões
 this._div.botoes = null;
 // Insere o elemento no parent
 if (parentId != null) document.getElementById(parentId).appendChild(this._div);
 };
 jfWindow.prototype.setTitle = setTitle;
 function setTitle(text) {
 this._div.tit = document.createElement("div");
 this._div.tit.className = this._div.className + "Tit";
 this._div.tit.innerHTML = text;
 this._div.insertBefore(this._div.tit, this._div.cont);
 };
 jfWindow.prototype.setTitleAction = setTitleAction;
 function setTitleAction(action) {
 var _tagA = document.createElement("a");
 _tagA.href = "#";
 _tagA.onclick = action;
 _tagA.innerHTML = "clique aqui.";
 this._div.tit.innerHTML += ", ";
 this._div.tit.appendChild(_tagA);
 _tagA = null;
 };
 jfWindow.prototype.addCont = addCont;
 function addCont(newCont) {
 this._div.cont.appendChild(newCont);
 };
 jfWindow.prototype.addButtom = addButtom;
 function addButtom(className, text, validationFunction, actionFunction) {
 if (this._div.botoes == null) {
 this._div.botoes = document.createElement("div");
 this._div.botoes.className = this._div.className + "Buttoms";
 this._div.botoes.cont = 1;
 this._div.appendChild(this._div.botoes);
 }
 var _botao = new jfButtom(this._div.id + this._div.botoes.cont++, className, text,
this._div.id);
 this._div.botoes.appendChild(_botao.getObj());
 if (validationFunction != null) _botao.setValidation(validationFunction);
 if (actionFunction != null) _botao.setAction(actionFunction);
 _botao.show();

129

 _botao = null;
 };
 jfWindow.prototype.show = show;
 function show() {
 //this._div.style.visibility = "visible";
 this._div.style.display = "block";
 };
 jfWindow.prototype.hide = hide;
 function hide() {
 //this._div.style.visibility = "hidden";
 this._div.style.display = "none";
 };
 jfWindow.prototype.clearCont = clearCont;
 function clearCont() {
 var _arrayCont = this._div.cont.childNodes;
 for (var i = _arrayCont.length - 1; i >= 0; i--) {
 this._div.cont.removeChild(_arrayCont[i]);
 }
 };
 jfWindow.prototype.clearAll = clearAll;
 function clearAll() {
 //this._div.style.visibility = "hidden";
 this._div.style.display = "none";
 this.clearCont();
 if (this._div.tit != null) {
 this._div.removeChild(this._div.tit);
 this._div.tit = null;
 }
 if (this._div.botoes != null) {
 this._div.removeChild(this._div.botoes);
 this._div.botoes = null;
 }
 };
 jfWindow.prototype.getObj = getObj;
 function getObj() {
 return this._div;
 };
 };
};
// Objeto que representa uma janela - fim --

main.js

// Variáveis Globais - início --
var flagAtualiza = false;
var timeOut1 = null;
var timeOut2 = null;
// Variáveis Globais - fim ---
window.onload = function() {
 // Monta o Menu
 var menu = new jfMenuH("jfMenuH", "menu");
 menu.addMenuItem("Câmeras", null);
 menu.addSubMenuItem("Câmera 1", menuCamera1);
 menu.addSubMenuItem("Câmera 2", menuCamera2);
 menu.addSubMenuItem("Câmera 3", menuCamera3);
 menu.addMenuItem("Conectar", menuConectar);
 menu.addMenuItem("Desconectar", menuDesconectar);
 menu.show();
 menu = null;
 // Define as dimensões da área de trabalho
 funcaoDimensionaAreaDeTrabalho();
};
window.onresize = function() {
 funcaoDimensionaAreaDeTrabalho();
};
window.onunload = function() {
 //alert("Volte sempre!");
};
funcaoDimensionaAreaDeTrabalho = function() {
 var intContainerHeight = document.getElementById("container").clientHeight;
 var intLogoHeight = document.getElementById("logo").clientHeight;
 var intMenuLineHeight = document.getElementById("menu").clientHeight;
 var intRodapeHeight = document.getElementById("rodape").clientHeight;

130

 var intAreaTrabalho = intContainerHeight - intLogoHeight - intMenuLineHeight - intRodapeHeight -
30;
 if (intAreaTrabalho > 0) {
 document.getElementById("areatrabalho").style.height = intAreaTrabalho + "px";
 }
 else {
 document.getElementById("areatrabalho").style.height = "0px";
 }
};
// Funções para apresentar máscara de dados - início -----------------------------------
funcaoAguarde = function(mostra) {
 if (mostra) {
 document.getElementById("aguarde").style.display = "block";
 }
 else {
 document.getElementById("aguarde").style.display = "none";
 }
};
// Funções para apresentar máscara de dados - fim --------------------------------------
// Menu - início ---
menuCamera1 = function() {
 document.getElementById("cam2").style.display = "none";
 document.getElementById("cam3").style.display = "none";
 document.getElementById("cam1").style.display = "block";
 document.getElementById("cabcameras").innerHTML = "Câmera 1";
};
menuCamera2 = function() {
 document.getElementById("cam1").style.display = "none";
 document.getElementById("cam3").style.display = "none";
 document.getElementById("cam2").style.display = "block";
 document.getElementById("cabcameras").innerHTML = "Câmera 2";
};
menuCamera3 = function() {
 document.getElementById("cam1").style.display = "none";
 document.getElementById("cam2").style.display = "none";
 document.getElementById("cam3").style.display = "block";
 document.getElementById("cabcameras").innerHTML = "Câmera 3";
};
menuConectar = function() {
 var id, desc, memory, indice, tagDIV, tagIMG, tagA;
 id = desc = memory = indice = tagDIV = tagIMG = tagA = null;
 var retorno = document.getElementById("retorno");
 var objAjax = new jfAjax();
 objAjax.url = url + "Conecta";
 objAjax.postSynchronouslyCall();
 // Verificar se o retorno do webservice foi null
 if (objAjax.getReturn() == null) {
 retorno.innerHTML = "Problema na conexão com a estação!!!";
 retorno.className = "nok";
 }
 else if (objAjax.getReturn().indexOf("NOK") > 0) {
 retorno.innerHTML = "Problema na conexão com a estação!!!";
 retorno.className = "nok";
 }
 else {
 // Cria um objeto para recuperar o xml
 objAjax.url = url + "MontaComandos";
 objAjax.postSynchronouslyCall();
 var objIO = new jfParseXML();
 var comandos = objIO.getXML(objAjax.getReturn());
 // Gera um array de Itens
 var arrayItem = comandos.getElementsByTagName("item");
 // Para cada item do array, recupera o ID, a DESC, e o MEMORY
 document.getElementById("listacomandos").innerHTML = "";
 for (var i = 0; i < arrayItem.length; i++) {
 // Para o memory, tem que pegar apenas a parte do nome que ficar após o ']'
 id = arrayItem[i].getAttribute("id");
 desc = arrayItem[i].getAttribute("desc");
 memory = arrayItem[i].getAttribute("memory");
 indice = memory.indexOf("]") + 1;
 memory = memory.substr(indice);
 // Cria div e faz className = "ok" e id = ID
 tagDIV = document.createElement("div");
 tagDIV.id = id;

131

 tagDIV.className = "nok";
 // Cria img e faz src = "./images/Ok.png"
 tagIMG = document.createElement("img");
 tagIMG.src = "./images/nok.png";
 // Cria a e faz href = "#", innerHTML = DESC, funcao = MEMORY, e onclick = funcao a definir
 tagA = document.createElement("a");
 tagA.href = "#";
 tagA.innerHTML = desc;
 tagA.funcao = memory;
 tagA.onclick = null;
 // div <- img e a
 tagDIV.appendChild(tagIMG);
 tagDIV.appendChild(tagA);
 // div 'listacomandos' <- div
 document.getElementById("listacomandos").appendChild(tagDIV);
 }
 objIO = id = desc = memory = tagDIV = tagIMG = tagA = null;

 tagDIV = document.createElement("div");
 tagDIV.funcao = "Setup";
 tagDIV.onclick = executaComando;
 tagDIV.onclick();
 tagDIV = null;
 retorno.innerHTML = "Conectado com sucesso!!!";
 retorno.className = "ok";
 }
 retorno.style.display = "block";
 timeOut1 = setTimeout("escondeMensagem()", 2000);

 // Faz flag de atualização = true
 flagAtualiza = true;
 // Chama função de atualização
 atualizaComandos();
};
menuDesconectar = function() {
 flagAtualiza = false;
 clearTimeout(timeOut1);
 document.getElementById("listacomandos").innerHTML = "";
 document.getElementById("retorno").style.display = "none";
};
atualizaComandos = function() {
 var id, value;
 id = value = null;
 var retorno = document.getElementById("retorno");
 var objAjax = new jfAjax();
 objAjax.url = url + "AtualizaComandos";
 objAjax.postSynchronouslyCall();
 // Verificar se o retorno do webservice foi null
 if (objAjax.getReturn() == null) {
 retorno.innerHTML = "Problema na conexão com a estação!!!";
 retorno.className = "nok";
 }
 else if (objAjax.getReturn().indexOf("NOK") > 0) {
 retorno.innerHTML = "Problema na conexão com a estação!!!";
 retorno.className = "nok";
 }
 else {
 var objIO = new jfParseXML();
 var comandos = objIO.getXML(objAjax.getReturn());
 // Gera um array de Itens
 var arrayItem = comandos.getElementsByTagName("item");
 // Para cada item do array, recupera o ID, e VALUE
 for (var i = 0; i < arrayItem.length; i++) {
 id = arrayItem[i].getAttribute("id");
 value = arrayItem[i].getAttribute("value");
 // Percorre os elementos e atualiza os IDs com OK e NOK, trocando as imagens, quando
necessário
 document.getElementById(id).className = value;
 document.getElementById(id).getElementsByTagName("img")[0].src = "./images/" + value +
".png";
 if (value == "ok") {
 document.getElementById(id).getElementsByTagName("a")[0].onclick = executaComando;
 }
 else {

132

 document.getElementById(id).getElementsByTagName("a")[0].onclick = null;
 }
 }
 objIO = id = value = null;
 retorno.style.display = "none";
 }

 if (flagAtualiza) {
 timeOut1 = setTimeout("atualizaComandos()", 1000);
 }
};
executaComando = function() {
 var retorno = document.getElementById("retorno");
 retorno.style.display = "none";
 retorno.className = "ok";
 retorno.innerHTML = "Comando executado com sucesso!"
 var objAjax = new jfAjax();
 objAjax.url = url + this.funcao;
 objAjax.postSynchronouslyCall();
 // Verificar se o retorno do webservice foi null
 if (objAjax.getReturn() == null) {
 retorno.innerHTML = "Problema no acionamento do webservice!!!";
 retorno.className = "nok";
 }
 else if (objAjax.getReturn().indexOf("NOK") > 0) {
 retorno.innerHTML = "Problema na execução do comando!!!";
 retorno.className = "nok";
 }
 retorno.style.display = "block";
 retorno = null;
 timeOut1 = setTimeout("escondeMensagem()", 2000);
};
escondeMensagem = function() {
 document.getElementById("retorno").style.display = "none";
}
// Menu - fim --

main.js

function click(event) {
 var evento = event;
 if (!evento) {
 evento = window.event;
 }
 if ((evento.button == 2) || (evento.button==3)) {
 oncontextmenu = "return false";
 }
}
document.onmousedown = click;
document.oncontextmenu = new Function("return false;");

web.config

<?xml version="1.0"?>
<configuration>
 <appSettings>
 <clear/>
 <add key="sigla" value="PMRLSA"/>
 <add key="nome" value="Laboratório de Sistemas de Automação"/>
 <add key="estacao" value="Transporte - TELEOPERADOR"/>
 <add key="camera1" value="192.168.0.195"/>
 <add key="camera2" value="192.168.0.194"/>
 <add key="camera3" value="192.168.0.193"/>
 </appSettings>
 <connectionStrings/>
 <system.web>
 <compilation debug="true"></compilation>
 <authentication mode="None"/>
 </system.web>
 <system.codedom></system.codedom>
 <system.webServer></system.webServer>
</configuration>

133

ANEXO B – Subsistema de transporte: Programa em Lad der

O código a seguir foi desenvolvido no Simatic Manager, software da Siemens, em

linguagem Ladder. O código implementa as funções de controle do controlador programável,

CLP SIMATIC S7-300.

DB1: Instance data block for FB1

DB2: Instance data block for FB2

DB3: Instance data block for FB3

DB4: Instance data block for FB4

DB5: “ID_ESTACAO”

134

DB6: “ID_CARROS”

DB7: “ID_COR”

DB8: “ID_PRODUTO”

DB10: Global data block

135

DB20: Global data block

DB21: Instance data block for FB1

DB22: Instance data block for FB2

DB23: Instance data block for FB3

DB24: Instance data block for FB4

DB31: Instance data block for FB1

136

DB32: Instance data block for FB2

DB33: Instance data block for FB3

DB34: Instance data block for FB4

DB41: Instance data block for FB1

DB42: Instance data block for FB2

DB43: Instance data block for FB3

DB44: Instance data block for FB4

137

FB1: “FUNCAO_ENTRADA”

FB2: “FUNCAO_TRAVA”

FB3: “FUNCAO_DESTRAVA”

138

FB4: “FUNCAO_DE_SAIDA”

FC1: “Funcionamento_Estacao 2”

139

140

FC2: “Pesquisa_Estacao 2”

Identificação do ID do carrinho que está chegando na estação 2 (inspeção)

141

142

143

FC3: “Funcionamento_Estação 3”

Funcionamento da estação 3

144

145

146

147

148

149

150

151

152

153

154

155

FC4: “Funcionamento_Estação 4”

Funcionamento da estação 4

156

157

158

159

160

161

FC10: “fcLeituraASI”

Leitura de todos os sensores na rede ASI

162

FC11: “fcLeitura”

Mapeamento dos sensores na memória interna

163

164

165

FC20: “fcEscritaASI”

Escrita nos atuadores na rede ASI

166

FC21: “fcEscrita”

Mapeamento dos atuadores na memória interna

167

168

FC50: “Módulo básico Est_1”

Módulo básico da estação 1

169

FC51: “Modulo básico Est_2”

170

171

FC52: “Modulo básico Est_3”

172

FC53: “Modulo básico Est_4”

173

OB1: “Principal”

Programa principal

174

175

176

